Hochvakuum-Pumpen

TURBOVAC / TURBOVAC MAG
Turbomolekular-Vakuumpumpen

DIP / DIJ / OB / LEYBOJET Öldiffusions-Vakuumpumpen

COOLVAC Kryopumpen

COOLPOWER Kaltköpfe

COOLPAK Kompressoren

> 240.00.01 Auszug aus dem Leybold Gesamtkatalog 2018 Produkt-Kapitel Hochvakuum-Pumpen

Inhalt

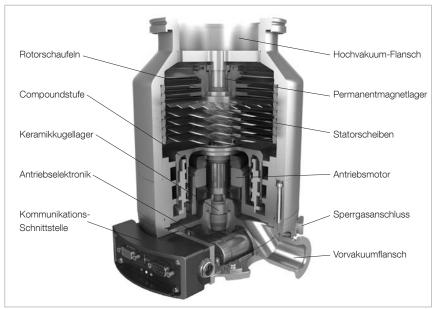
Hochvakuumpumpen

Turbomolekular-vakuumpumpen TURBOVAC / TURBOVAC MAG	6
Allgemeines	
Allgemeines zu TURBOVAC-Pumpen	6
Applikation für TURBOVAC-Pumpen	12
Zubehör für TURBOVAC-Pumpen	13
Produkte Produkte	
Turbomolekular-Vakuumpumpen mit Hybrid (magnetisch/mechanisch) Rotor-Lagerung	
Allgemeines zu TURBOVAC i / iX-Pumpen	14
mit integriertem Frequenzwandler	22
mit integriertem Frequenzwandler und integrierter Vakuumsystem-Steuereinheit	22
Spezial Turbomolekular-Vakuumpumpen.	34
Turbomolekular-Vakuumpumpen mit magnetischer Rotor-Lagerung MAG INTEGRA mit integriertem Frequenzwandler mit oder ohne Compound-Stufe	36
Zubehör	50
Elektronische Frequenzwandler	
für Pumpen mit magnetischer Rotor-Lagerung	58
Schwingungsdämpfer	62
Heizmanschette für CF-Hochvakuum-Flansche	62
Feinfilter	63
Elektromagnetisches Belüftungs-Ventil	63
Stromausfall-Fluter	
Stromausfall-Fluter, elektromagnetischer Antrieb	64
Sperrgas- und Belüftungs-Ventile	64
Gasfilter auf G 1/4" für Sperrgas- und Belüftungs-Ventil	
Zubehör für serielle Schnittstellen RS 232 C und RS 485 C	65
PC-Software LEYASSIST	
Schnittstellenadapter für Frequenzwandler mit RS 232 C / 485 C Schnittstelle	65
Sonstiges	
Service-Dienstleistungen	66

Allgemeines	
Applikation und Zubehör für Diffusionspumpen	. 68
Öl für Diffusionspumpen bei verschiedenen Einsatzgebieten	. 68
Öl für Diffusionspumpen für verschiedene Pumpentypen	. 69
Produkte	
DIP-Pumpen, wassergekühlt	. 72
DIJ-Pumpen, wassergekühlt	. 76
Öl-Booster OB 6000 bis OB 18000	. 80
LEYBOJET 630, wassergekühlt	. 82
Zubehör	
Astrotorus-Dampfsperren	. 84
Temperaturabhängige Schaltelemente zur automatischen Pumpstandsteuerung	. 86
Überwachungsgeräte	. 87
Energieregler	. 88
Adsorptionsfallen mit Al-Oxid-Einsatz	. 90
Eckventile mit elektropneumatischem Antrieb	. 92
Kryopumpen, Kaltköpfe und Kompressoren COOLVAC / COOLPOWER / COOLPAK	94
	. 94
Allgemeines	• 94
Applikation und Zubehör	
Applikation und Zubehör Kryopumpen	. 94
Applikation und Zubehör Kryopumpen	. 94 . 95
Applikation und Zubehör Kryopumpen	. 94 . 95 . 96
Applikation und Zubehör Kryopumpen Kryotechnik Kryopumpen Kaltköpfe	. 94 . 95 . 96
Applikation und Zubehör Kryopumpen Kryotechnik Kryopumpen Kaltköpfe Kälteleistungs-Diagramme	. 94 . 95 . 96 98
Applikation und Zubehör Kryopumpen Kryotechnik Kryopumpen Kryopumpen Kaltköpfe Kaltköpfe Kälteleistungs-Diagramme Kompressor-Einheiten	. 94 . 95 . 96 98
Applikation und Zubehör Kryopumpen Kryotechnik Kryopumpen Kryopumpen Kaltköpfe. Kälteleistungs-Diagramme Kompressor-Einheiten Produkte	. 94 . 95 . 96 98
Applikation und Zubehör Kryopumpen Kryotechnik Kryopumpen Kryopumpen Kaltköpfe Kälteleistungs-Diagramme Kömpressor-Einheiten Produkte Kryopumpen	. 94 . 95 . 96 98
Applikation und Zubehör Kryopumpen Kryotechnik Kryopumpen Kryopumpen Kaltköpfe. Kälteleistungs-Diagramme Kompressor-Einheiten Produkte	. 94 . 95 . 96 98
Applikation und Zubehör Kryopumpen Kryotechnik Kryopumpen Kryopumpen Kaltköpfe. Kälteleistungs-Diagramme Kompressor-Einheiten Produkte Kryopumpen Kryopumpen Kryopumpen Kryopumpen mit vollautomatischer Steuerung iClassicLine COOLVAC 1500 iCL.	. 94 . 95 . 96 98 . 100 . 101
Applikation und Zubehör Kryopumpen Kryotechnik Kryopumpen Kryopumpen Kaltköpfe Kälteleistungs-Diagramme Kälteleistungs-Diagramme Kompressor-Einheiten Produkte Kryopumpen Kryopumpen Kryopumpen mit vollautomatischer Steuerung iClassicLine COOLVAC 1500 iCL COOLVAC 2000 iCL, 3000 iCL	. 94 . 95 . 96 . 100 . 101
Applikation und Zubehör Kryopumpen Kryotechnik Kryopumpen Kaltköpfe. Kaltköpfe. Kälteleistungs-Diagramme Kompressor-Einheiten Produkte Kryopumpen Kryopumpen mit vollautomatischer Steuerung iClassicLine COOLVAC 1500 iCL. COOLVAC 5000 iCL, 3000 iCL COOLVAC 5000 iCL, 10000 iCL.	. 94 . 95 . 96 . 100 . 101
Applikation und Zubehör Kryopumpen Kryotechnik Kryopumpen Kryopumpen Kaltköpfe Kälteleistungs-Diagramme Kälteleistungs-Diagramme Kompressor-Einheiten Produkte Kryopumpen Kryopumpen Kryopumpen mit vollautomatischer Steuerung iClassicLine COOLVAC 1500 iCL COOLVAC 2000 iCL, 3000 iCL	. 94 . 95 . 96 98 . 100 . 101

Kryotechnik

Kaltköpfe, pneumatischer Antrieb Einstufige Kaltköpfe COOLPOWER 50 und 140 T
Kaltköpfe, mechanischer Antrieb Einstufiger Kaltkopf COOLPOWER 250 MD und Zweistufiger Kaltkopf COOLPOWER 10 MD 122
Kompressor-Einheiten
für Kaltköpfe, pneumatischer Antrieb, mit Wasserkühlung
COOLPAK 2000/2200
Allgemeines Zubehör für Kompressor-Einheiten COOLPAK 2000, 6000 H
Zubehör
Kryopumpen / Kryotechnik
· · · · · · · · · · · · · · · · · · ·
COOLVAC iClassicLine, System-Konfiguration Einfach-Betrieb
Tieftemperatur-Anzeigegerät MODEL 211S
Temperatur-Messfühler


Allgemeines zu TURBOVAC-Pumpen

Turbomolekular-Vakuumpumpen (TURBOVAC) werden in Anwendungen eingesetzt, die ein sauberes Hochoder Ultra-Hochvakuum erfordern, beispielsweise in der Forschung, Entwicklung oder in industriellen Bereichen wie etwa der Halbleiterindustrie, Analyseoder Beschichtungstechnik.

Funktionsprinzip

Bei der Turbomolekular-Vakuumpumpe handelt es sich im Prinzip um eine in einem Gehäuse schnell drehende Turbine deren Rotorstufen mit einer Vielzahl von Schaufeln bestückt sind. Zwischen den drehenden Rotorschaufeln sind gegenläufig ausgerichtete ruhende Statorscheiben angeordnet. Durch eine Impulsübertragung der sich drehenden Rotorschaufeln auf die Gasmoleküle wird deren zunächst ungerichtete thermische Bewegung in eine gerichtete Bewegung vom Einlassflansch der Pumpe in axialer Richtung zum Vorvakuumflansch umgewandelt. Im Bereich der molekularen Strömung (d.h. bei Drücken unterhalb von 10-3 mbar) ist die mittlere freie Weglänge der Gas-Moleküle größer als der Abstand zwi-

schen den Rotor- und den Statorschaufeln (typischerweise einige Zehntelmillimeter). Dementsprechend kollidieren die Moleküle hauptsächlich mit den optisch dichten Rotorschaufeln, so dass sich ein höchst effektiver Pumpvorgang ergibt. Im Bereich der laminaren Strömung (d.h. bei Drücken über 10⁻¹ mbar) wird die Wirkung des Rotors durch häufige Kollisionen zwischen den Molekülen beeinträchtigt. Daher ist eine Turbomolekular-Vakuumpumpe nicht in der Lage, Gase bei Atmosphärendruck zu pumpen.

Schnittzeichnung einer Turbomolekular-Vakuumpumpe (TURBOVAC i)

Rotorlagerung

Leybold bietet verschiedene Systeme der Rotorlagerung an. Eine rein klassisch mechanische Rotorlagerung (TURBOVAC) oder magnetische Rotorlagerung (TURBOVAC MAG) als auch eine Hybridlagerung (TURBOVAC i/iX) bei der das vorvakuumseitige Lager als lebensdauergeschmiertes Keramikkugellager und das hochvakuumseitige Lager als verschleißfreies Magnetlager ausgeführt ist. Allen Lagerungsarten ist eigen, dass sie kein Öl zur Schmierung der Lager verwenden, das unter Umständen bei Stillstand der Pumpe, aufgrund der fehlenden Pumpwirkung, in den Rezipienten rückdiffundieren könnte.

Antriebselektronik/ Steuereinheit

Für Antrieb und Überwachung der Turbomolekular-Vakuumpumpe ist ein elektronischer Frequenzwandler notwendig. Das Gerät liefert die Antriebsspannung und Ausgangsfrequenz für den Motor und übernimmt die automatische Überwachung des Systems. Der optimale Hochlauf des Pumpenrotors wird durch stetig steigende Spannungs- und Frequenzeinspeisung erzielt. Nach Erreichen der Nenndrehzahl wird der Anfahrstrom auf das für Normalbetrieb notwendige Maß zurückgeregelt.

Der Frequenzwandler und Motor der TURBOVAC sind so ausgelegt, dass selbst bei hohen Ansaugdrücken der Drehzahlabfall minimal ist. Dadurch wird ein höchstmöglicher Gasdurchsatz auch im Übergangsbereich von molekularer zur viskosen Strömung erreicht.

Je nach den vorgegebenen Systemund Einbaubedingungen kann die Steuereinheit individuell durch das umfangreiche optionale Zubehör ergänzt und somit leicht in bestehende Systeme integriert werden.

Vorvakuumpumpe

Weil Turbomolekular-Vakuumpumpen nicht direkt gegen Atmosphärendruck verdichten können, ist zu deren Betrieb immer eine ausreichend dimensionierte Vorvakuumpumpe erforderlich. Für die klassische Rotoranordung mit beschaufelten Rotorblättern eignen sich in der Regel zweistufige Drehschieber-Vakuumpumpen (TRIVAC); gegebenenfalls auch einstufige Drehschieber-Vakuumpumpen (SOGEVAC BI) oder Scroll-Vakuumpumpen (SCROLLVAC). Bei der Wide Range Variante, deren Rotor zusätzlich mit einer Kompressionsstufe (Compound) ausgestattet ist, können auch Membran-Vakuumpumpen (DIVAC) eingesetzt werden.

Kenngrößen

Saugvermögen

Das Saugvermögen "S" ist der geförderte Volumenstrom durch die Ansaugöffnung der Pumpe. Es ist gasartabhängig weshalb das Nennsaugvermögen, also das maximal erreichbare Saugvermögen der Pumpe, gewöhnlich für Luft bzw. Stickstoff angegeben wird. In der Hochvakuumtechnik hat es sich eingebürgert das Saugvermögen in der Dimension [I/s] anzugeben. Das Saugvermögen ist eine nichtlineare Funktion des Eingangsdruckes S = S(p₁).

Saugleistung/Gas-Durchsatz

Die Saugleistung oder der Gasdurchsatz "Q", Dimension [mbar · l/s], ist mit dem Saugvermögen durch den Einlassdruck verknüpft. $Q = Q(p_1) = p_1 * S(p_1)$.

Kompression

Die Kompression "K" ist definiert als das Verhältnis des vorvakuumseitigen Druckes der Turbomolekular-Vakuumpumpe zum Druck auf der Hochvakuumseite. K = $K(p_w) = p_w/p_{Hv}$ Die Kompression ist gasartabhängig.

Enddruck

Der Enddruck "p $_{\rm end}$ " einer ausheizbaren Turbomolekular-Vakuumpumpe ist definiert durch das Verhältnis des Vorvakuumdruckes durch das Kompressionsverhältnis das in einer Prüfkammer 48 Stunden nach 24-stündigem Ausheizen der Messanordnung erreicht wird. $p_{\rm end} = p_{\rm w}/{\rm K}_{\rm o}.$

Der maximal erreichbare Enddruck hängt u.a. von der Sauberkeit der Apparatur, der verwendeten Vorvakuumpumpe, den verwendeten Dichtungen am Hochvakuum-Flansch und den Ausheizbedingungen ab.

TURBOVAC Baureihe

Die TURBOVAC-Pumpen sind Turbomolekular-Vakuumpumpen mit einer **mechanischen** Rotorlagerung, welche für den Druckbereich von 10⁻¹ mbar bis 10⁻¹⁰ mbar ausgelegt sind. Das Saugvermögen für Luft reicht von 35 l/s (Einlassflanschdurchmesser = 40 mm) bis 1150 l/s (Einlassflanschdurchmesser = 250 mm).

Neben einer Variante mit äußerst zuverlässigen Keramik-Kugellagern auf der Vorvakuum- und Hochvakuumseite bietet Leybold auch eine Reihe hybridgelagerter Turbomolekular-Vakuumpumpen an, die mit einem Keramikkugellager auf der Vorvakuumseite und einem Permanentmagnetlager auf der Hochvakuumseite ausgestattet sind (TUR-BOVAC i -Reihe).

Durch die kompakte Ausführung und die Einfachheit der Bedienung werden diese Pumpen-Baureihen in allen Hochvakuum- und Ultra-Hochvakuum-Anwendungsgebieten eingesetzt. Insbesondere laufen die TURBOVAC-Pumpen sehr erfolgreich in der Massenspektroskopie, CD-, DVD- und Festplatten-Produktion, in der Herstellung großflächiger optischer Schichten in nicht-korrosiven Halbleiter-Produktionsprozessen und im Labor sowie Forschungs-Instituten.

Die wichtigsten Vorteile der TURBOVAC-Baureihe sind:

- Ölfreie Pumpen zur Erzeugung sauberer Hoch- und Ultra-Hochvakuum-Bedingungen
- Höchste Leistungsfähigkeit unabhängig von der Einbaulage
- Höchste Zuverlässigkeit
- Einfach in der Bedienung
- Kompakte Ausführung

TURBOVAC (T) 350 iX

TURBOVAC MAG-Baureihe

Die TURBOVAC MAG-Pumpen sind Turbomolekular-Vakuumpumpen mit einer **magnetischen** Rotor-Lagerung, welche für den Druckbereich von 10⁻¹ mbar bis 10⁻¹⁰ mbar ausgelegt sind. Das Saugvermögen für Luft reicht von 300 l/s (Einlassflanschdurchmesser = 100 mm) bis 2000 l/s (Einlassflanschdurchmesser = 250 mm).

Die TURBOVAC MAG-Pumpen werden vor allem dort eingesetzt, wo geräuschund vibrationsfreier Lauf, Kohlenwasserstofffreiheit und lange WartungsIntervalle erforderlich sind. Auch die
Elektronenstrahl-Mikroskopie, die Analysentechnik und die Forschungslabors
sind ein wichtiges Anwendungsgebiet
für diese Pumpen.

Die wichtigsten Vorteile der TURBOVAC MAG-Baureihe sind:

- Kohlenwasserstofffreie Pumpen zur Erzeugung sauberer Hoch- und Ultra-Hochvakuum-Bedingungen
- Höchste Leistungsfähigkeit unabhängig von der Einbaulage
- Höchste Zuverlässigkeit
- Extrem geringe Vibrationen
- Lange Wartungsintervalle

TURBOVAC MAG 2200 iPL

Einsatz von Turbomolekular-Vakuumpumpen in der Analysentechnik

Alle modernen Verfahren zur Gas-, Flüssigkeits- und Plasmaanalyse - wie z.B. GC-MS. LC-MS und ICP-MS arbeiten in Verbindung mit Massenspektrometern und benötigen daher hinreichend gute Hochvakuum-Bedingungen. Auch bei Elektronen-Mikroskopen und einer Vielzahl von Geräten zur Oberflächenanalyse ist die Erzeugung von Hochvakuum zwingend erforderlich. Als ideale Hochvakuum-Pumpe hat sich in über 90% der Anwendungen die Turbomolekular-Vakuumpumpe erwiesen. Dank kohlenwasserstofffreiem Vakuum, einfachster Bedienung, kompaktem Design und nahezu wartungsfreiem Betrieb hat sie vor allem die Diffusionspumpe in den meisten Fällen verdrängt.

TURBOVAC MAG W 600 iP

Auf Grund der jahrzehntelangen Erfahrung und Zusammenarbeit mit Forschungseinrichtungen und Herstellern von Analyse-Geräten hat Leybold seine Produkte kontinuierlich optimiert.

Mit der TURBOVAC Wide Range-Reihe ist eine Steigerung gelungen, der allen Anwendern in der Analysen-Technik flexibel einsetzbare und zuverlässige Produkte zur Verfügung stellt.

Dank des modularen Baukasten-Konzeptes kann der Anwender das Vakuumsystem genau auf seine Bedürfnisse ausrichten, die Komponenten optimal in seine Anlage integrieren, und damit die preisgünstigste Systemkonfiguration finden. Leybold hat darüber hinaus auf spezielle Kundenwünsche mit der Einführung der TURBOVAC Multi Inlet-Reihe noch einmal einen Quantensprung für die Analyseninstrumente erreicht.

Zwei oder mehrere Analysen-Kammern können gleichzeitig von einer Multi Inlet-Pumpe gepumpt werden. Diese Pumpen sind auf Saugvermögen und Gasdurchsatz getrimmt, um z.B. höhere Nachweisempfindlichkeiten von Analyse-Systemen, geringeren Platzbedarf und steigenden Probendurchsatz zu erzielen. Der Vorteil für die Kunden ist die hohe Kompaktheit des Vakuum-Systems bei hoher Leistungsdichte, eine einfache Montage, stabile Vakuum-Verbindungen und gegenüber Nutzung diskreter Einzelpumpen deutlich geringere Investitionskosten für das Gesamt-System. Die Kartuschenlösung (Cartridge) erlaubt darüber hinaus ein innovatives kostengünstiges Design der Kundenanlage und im Servicefall einen einfachen Austausch der aktiven Einheit ohne aufwendige Montagearbeiten und Lecksuche.

Cartridge-Vorteile, die überzeugen:

- Höheres effektiveres Saugvermögen
- Keine Leitwertverluste
- Kompaktes Vakuumsystem
- Leichter Pumpenwechsel ohne Demontage der hochsensiblen Massenspektrometerkammern

Die Vorteile für den Kunden spiegeln sich in der Effizienz der Analysengeräte wieder:

- Steigerung der Nachweisempfindlichkeit
- Verkleinerung der Analysensysteme
- Erhöhung des Probendurchsatzes
- Reduzierung der Systemkosten
- Niedrigere Wartungskosten

In Kombination mit den Vorvakuumpumpen wie z.B. SOGEVAC, TRIVAC oder SCROLLVAC kann Leybold das optimale Vakuum-System für die wichtigsten Anwendungen in der Analysentechnik anbieten.

TURBOVAC i Multi Inlet

Einsatz von Turbomolekular-Vakuumpumpen in der Beschichtungs-Technik

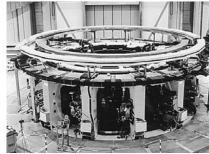
Die Beschichtung von optischen und magnetischen Speichermedien, die Oberflächen-Vergütung von optischen Bauelementen sowie die Beschichtung von Architektur-Glas muss unter Hochvakuum-Bedingungen erfolgen. Nur so kann man eine hohe Uniformität und Haftung der aufgebrachten Schichten sicherstellen.

Die Vakuum-Erzeugung hat entscheidenden Einfluss auf die Qualität der Beschichtung. Mit dem Abpumpen auf Drücke im Bereich von 10⁻⁶ mbar werden störende Gas- und Wasserdampf-Moleküle aus der Prozess-Kammer entfernt. Beim Sputtern läuft der Beschichtungs-Prozess im Druckbereich

zwischen 10⁻³ und 10⁻² mbar ab, beim Aufdampfen bei Drücken unter 10⁻⁴ mbar.

Die Turbomolekular-Vakuumpumpe erfüllt die Anforderungen der Kunden nach kohlenwasserstofffreiem Vakuum, einfachster Bedienung, kompaktem Design und nahezu wartungsfreiem Betrieb in geradezu idealer Weise. Leybold hat Pumpen mit Flansch-Durchmessern von Nennweite 40 mm bis 250 mm im Programm.

So ist für jede Anwendung die richtige Pumpe verfügbar, sei es für die Beschichtung von Datenträgern (CD, DVD, Festplatten), die Beschichtung von Werkzeugen, von Präzisions-Linsen in der Optik, von Displays oder Architektur-Glas.


Beschichtung von Architekturglas

Einsatz von Turbomolekular-Vakuumpumpen in der Forschung und Entwicklung

Bei vielen Anwendungen, bei denen neue Ideen in technische Prozesse überführt werden sollen, bildet die Vakuumtechnik eine Grundvoraussetzung um diese Prozesse überhaupt realisieren zu können.

In der Forschung und Entwicklung werden alle Arten von Leybold Turbomolekular-Vakuumpumpen eingesetzt.

Da sich die Einsatzanforderungen je nach Anforderung z.B. bei der universitären Grundlagenforschung, in der industriellen Entwicklung oder Forschung in Großlabors deutlich unterscheiden, kann aus dem umfangreichen Angebot die richtige Komponente ausgewählt oder das passende System zusammengestellt werden.

Fusionstechnologie

Notizen Commence de la Commence de l	

Applikation für TURBOVAC-Pumpen

					/.	/:+
				_14	0/1/0	XO.
			/,c	13501	01320	/
		/	() () () () () () () () () ()	(V)	Met	COLL
		Oo	,,,\o' ₂	F. Wi	11 AC	
	(2)	RO N		ن/رح	20, \	30,6
/	SKO/	JRBO	JRB/1		PO'	SO,
		. / ^	, b	4	. 4	301
$\pm \Xi$			$+ \equiv$	ΗΞ.		
+-			+-	_		
+-			+-	_		_
$+ \equiv$		ΗΞ	$+ \equiv$	ΗΞ.		
+ -		-	-	_		_
-		•		•		
				_		

Zubehör für TURBOVAC-Pumpen

					/	<u> </u>	(4)
					NA.	0,01	XX/
			RO V	/2	SSO NO STANDARD	OBOLA NA PARA	30/10/10/10/10/10/10/10/10/10/10/10/10/10
			/.			"Ille	13011
•		/			M	JAQ.	
Pumpen		ON	NO N		N.	, M	,5°,6
Put	/<	80/	SK/\	PED 1	0/1	PO /1	10 /2°
Zubehör							
Integrierter Frequenzwandler							
Externer Frequenzwandler und Netzteil							
24VDC Display Einheit TURBO.CONTROL i							
Pumpensteuereinheit mit Netzteil TURBO.CONTROL 300		•					
Netzteil							
Befestigungssatz							
Splitterschutz							
Schwingungsdämpfer							
Luftkühlung							
Wasserkühlung							
Flanschheizung für CF Flansche							
Belüftungsventil							
Sperrgasventil							
Sperrgas- und Belüftungsventil							
Stromausfallfluter							
Elektronisches Bremsmodul							
Relais Box							
Zubehör für Serielle Schnittstellen							
Regelungs- und Steuerungs-Software für TURBOVAC	-	•			•		

Allgemeines zu TURBOVAC i / iX-Pumpen

Turbomolekular-Vakuumpumpen mit Hybrid Rotorlagerung (mechanisch/magnetisch)

TURBOVAC i, iX / T i, T iX

Die TURBOVAC i / iX Serie ist eine modular aufgebaute Reihe von Turbomolekular-Vakuumpumpen, welche mit der integrierten Antriebselektronik (Frequenzwandler) eine Einheit bildet. Bei der Entwicklung der TURBOVAC i / iX wurde im Hinblick auf die maximal erreichbare Pumpleistung im Verhältnis zur Einbaugröße großen Wert gelegt. Das speziell entwickelte Rotor/Statordesign, auf Wunsch in Kombination mit einer zusätzlichen Kompressionsstufe, garantiert ausgezeichnete Leistungsdaten im Hinblick auf Saugvermögen, Gasdurchsatz und Kompression, speziell auch für leichte Gase.

Bei allen Pumpen besteht die Lagerung aus einem verschleißfreien Permanentmagnetlager auf der Hochvakuumseite und einem lebensdauergeschmierten, ölfreien Keramik-Kugellager auf der Vorvakuumseite. Dadurch entfallen die üblicherweise notwendigen Regelwartungen durch Ölwechsel. Das Keramik-Kugellager ist bei Bedarf vor Ort austauschbar.

Die Pumpen haben serienmäßig eine Belüftungs- und Sperrgas-Einrichtung zum direkten Anschluss von Belüftungs-, Sperrgasventil oder Sperrgasdrossel an die Pumpe. Aufgrund von vielfältigen Variationsmöglichkeiten (Elektronik, Pumpstufendesign, Gehäuse und Zubehörprogramm) lässt sich die TURBOVAC i/iX Serie flexibel auf die jeweilige Applikation anpassen.

So enthält die TURBOVAC iX gegenüber der TURBOVAC i eine integrierte Vakuumsystem-Steuereinheit, welche die Ansteuerung von Zubehörkomponenten wie Druckmessgerät, Ventilen, Lüftern und Vorpumpen übernimmt. Zahlreiche optional verfügbare Kommunikationsschnittstellen vereinfachen zudem die Integration in Ihre Anlage. Das Pumpstufendesign (Rotor, Stator und Holweckstufe) lässt sich spezifisch im Hinblick auf die jeweiligen Prozessanforderungen auswählen und bietet Varianten für höchstmöglichen Gasdurchsatz, Saugvermögen und / oder Kompression in Ein- oder Mehrkammersystemen. Ebenfalls umfangreich ist das Angebot an Gehäuse- und Flanschvarianten mit flexibel auf die Einbauvoraussetzungen anpassbaren Vakuumanschlüssen. Komplettiert wird die neue TURBOVAC i / iX Serie durch ein umfangreiches Zubehörprogramm, welches den Einsatzbereich der Pumpen erweitert.

Vorteile für den Anwender

- Hohe Pumpleistung bei gleichzeitig kompakter Baugröße
- Kostengünstiges Preis-Leistungs-Verhältnis
- Betriebssicheres, wartungsfreies Lagerkonzept ohne Ölschmierung
- Durch das modular aufgebaute Gesamtkonzept individuell anpassbar an die jeweiligen Gegebenheiten und Anforderungen
- Verschiedene Gehäuse und Flanschoptionen verfügbar
- Einfacher und leicht adaptierbarer Einbau, beliebige Betriebslage
- Durch die zahlreichen
 Schnittstellenoptionen einfache
 Prozessintegrierbarkeit
- Flexible Zubehöroptionen
 (Spannungsversorgung, Kühlung, Heizung, Belüftung, Montage etc.)

Übersicht über die Varianten

Elektronikvarianten

Alle Pumpen verfügen über eine integrierte Antriebselektronik mit 24/48 V Spannungsversorgung, welche die Antriebsleistung regelt und alle Pumpenfunktionen überwacht.

Die individuellen Anforderungen in Bezug auf die Kommunikationsschnittstellen und den Funktionsumfang der Ansteuerungsmöglichkeiten von Zubehörkomponenten können über verschiedene Elektronikvarianten abgedeckt werden.

Links: TURBOVAC i mit Standard-Schnittstelle

Mitte: TURBOVAC i mit Anybus-Schnittstellenerweiterung

 $\textbf{Rechts: TURBOVAC iX} \ \text{mit integrierter Vakuumsystem-Steuereinheit und Anybus-Schnittstellenerweiterung}$

Elektronikvarianten

TURBOVAC i (Standard)

Kostengünstige Lösung ausgestattet mit Basisfunktionen und Schnittstellen.

- Interner 24/48 V DC-Frequenzwandler
- Status LEDs
- Zubehöranschluss für bis zu zwei ansteuerbare Zubehörteile
- Benutzerfreundliche Schnittstellen (USB, RS 485, 15-pin DIG I/O)

Standardschnittstellen USB, RS 485 und 15-pin DIG I/O für TURBOVAC i

TURBOVAC i (Anybus Schnittstellenerweiterung)

Merkmale wie TURBOVAC i, zusätzlich:

 Benutzerfreundliche Schnittstellen (USB, 15-pin DIG I/O) und Anybus-Schnittstelle anstelle der RS 485 für weitere Schnittstellenoptionen: RS 232, Profibus, Ethernet/IP (weitere auf Anfrage)

Anybus-Schnittstellenerweiterung für TURBOVAC i

TURBOVAC iX (Vakuumsystem-Steuereinheit)

Mit integrierter Vakuumsystem-Steuereinheit und Anybus-Schnittstellenerweiterung

Merkmale wie TURBOVAC i (Anybus Schnittstellenerweiterung), zusätzlich:

- 3 Ausgänge zur Steuerung von Vakuumpumpenzubehör
- 1 Vakuummessröhrenanschluss zur Versorgung und Datenaufzeichnung sowie die Nutzung der Druckdaten für die Pumpstandsteuerung
- Flexibel programmierbare Software zur kundenspezifischen Konfiguration der Steueranschlüsse

Integrierte Vakuumsystem-Steuereinheit der TURBOVAC iX

Leistungsvarianten

TURBOVAC i, iX

Die Standardvariante für UHV Anwendungen und kompakte Pumpsystemlösungen. Sie liefert aufgrund der zusätzlichen Holweck-Kompressionsstufe hohes Saugvermögen und hohe Kompression speziell für leichte Gase und eignet sich aufgrund der hohen Vorvakuumbeständigkeit für den Betrieb mit Membran- oder Scroll-Vorvakuumpumpen.

TURBOVAC T i, T iX

Die "T"-Version im klassischen Rotordesign ohne zusätzliche Kompressionsstufe für den Einsatz unter verschärften Prozessbedingungen und hohen Gaslasten. Gegenüber der Standardvariante steht sie für schnellere Hochlaufzeiten, erhöhten Gasdurchsatz und verbesserte Toleranz im Hinblick auf das Abpumpen partikel- oder staubbehafteter Medien.

TURBOVAC i Multi-Inlet

Die Variante mit speziellem Rotordesign und zwei oder mehreren Einlässen als effiziente und kompakte Vakuumlösung für Mehrkammersysteme. Sie ermöglicht ein hohes Maß an Systemintegration und überzeugt im Vergleich zu Systemen mit diskreten Turbomolekularpumpen mit einem geringeren Gewicht und Platzbedarf sowie einer höheren Zuverlässigkeit des gesamten Vakuumsystems durch die Verwendung von weniger Komponenten als in Vergleichssystemen mit diskreten Turbopumpen.

Gehäuse- und Flanschvarianten

Die optimierte Rotorgeometrie ist speziell auf die industriellen Standardgrößen angepasst worden um ein Maximum an Pumpleistung zu erzielen. Die Gehäuse sind in ISO-K und CF verfügbar. Auf Anfrage sind zudem die Standardgehäuse mit einer Zusatzeinlassstufe erhältlich.

Flexibilität

Bei allen Pumpen ist der Vorvakuumanschluss drehbar und dadurch ist der flexible Einbau in bestehende Anlagen unter optimaler Ausnutzung des zur Verfügung stehenden Raumes gestattet. Zudem lässt sich der Einbauraum durch ein per Kabel absetzbares Schnittstellenmodul reduzieren.

Multiple Einlassstufen sind durch die TURBOVAC i Multi-Inlet realisierbar. Hier werden zusätzlich zur speziellen Kartuschenlösung, die einen einfachen Austausch im Feld ermöglicht, auch kundenspezifische Gehäuse- und Kammerlösungen angeboten, um ein höchstmögliches Maß an Systemintegration zu bieten.

Links: TURBOVAC i mit radialem Vorvakuumflansch Rechts: TURBOVAC i mit axialem Vorvakuumflansch

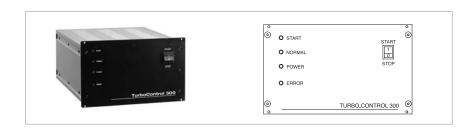
Zubehör für TURBOVAC i, iX / T i, T iX

Netzteil TURBO.POWER integra

- Anschlussfertiges Netzteil zur Montage unterhalb der Pumpe, 100-240 V
 - Montage nur TURBOVAC (T) 350 i(X) und TURBOVAC (T) 450 i(X)
- Inklusive kurzer Anschlussleitung zur Pumpe
- Auch als Tischgerät verwendbar (TURBOVAC 90/250/350/450) mit optionaler Erweiterungsanschlussleitung (1, 3, 5 m)
- Benötigt länderspezifisches Netzkabel (EU, US, UK ...)

24VDC Display Einheit TURBO.CONTROL i

- Ansteuerung und Überwachung einer TURBOVAC i / iX Pumpe
- Die 24 V DC Anschlussspannung erfolgt über ein Stecker-Netzteil mit Rundstecker (24 V DC – 1,5 A – 36 W)
- Kann in ein Rack installiert oder in einem Tischgehäuse montiert werden
- Verfügt über zwei Kommunikationskanäle (RS485 & USB) zur Pumpensteuerung und zwei Schnittstellen für Messröhren. Ein Ethernet Port gibt die Möglichkeit einen Webserver zur Pumpensteuerung und Überwachung auf einem externen PC laufen zu lassen und durch den TURBOCONTROL i geloggte Daten auszulesen
- Benötigt Stecker-Netzteil 24 V/DC und Standardkabel für die Kommunikation
- Folgende Messröhren können angeschlossen werden:
 PTR 90, PTR 91 N, TTR 91,
 TTR 91 N, TTR101, TTR 101 N


Pumpensteuereinheit mit Netzteil TURBO.CONTROL 300

- Steuereinheit und Netzteil für den Rackeinbau
- Mit Ein-/Ausschalter für die Turbomolekularpumpe
- Status LED's und Status Relays zur Überwachung der Pumpe
- Fernbedienung über Schnittstelle möglich
- Benötigt Verbindungkabel zur Pumpe (1, 3, 5 m) und länderspezifisches Netzkabel (EU, US, UK ...)

Verbindungsleitungen zur Pumpe mit offenen Enden für kundenspezifische Netzteile

Relaisbox

Die Relaisbox ermöglicht es, über den 24 V DC-Ausgang der TURBOVAC i einen mit Netzspannung betriebenen Verbraucher zu steuern, z.B. eine Vorvakuumpumpe. Netzspannung und Verbraucher werden mit Kaltgerätekabeln angeschlossen, die Steuerspannung mit M 8-Stecker.

 inklusive Anschlussleitung mit M 8-Stecker, 2 m lang

DC-Pumpenstecker

für Kundenadaptierung der Versorgungsspannung.

- 24/48 V DC-In Stecker TURBOVAC i

Radialluftkühler

für den seitlichen Anbau an die Pumpe, inklusive Anschlussstecker

- Flexible Positionierung

Axialluftkühler

für den Anbau unterhalb der Pumpe, inklusive Anschlussstecker

Wasserkühlung

für den flexiblen Anbau an die Pumpe (notwendig beim Ausheizen der Turbomolekular-Vakuumpumpe)

Heizmanschette

zum Ausheizen der Pumpe

- Ausheiztemperatur 100 °C
- Benötigt länderspezifisches Netzkabel (EU, US, UK ...)
- Mit optionaler Relaisbox und Zubehörkabel ist eine automatische Regelung über die TURBOVAC i / iX Elektronik möglich

Zubehörventile

- Spannungsversorgung 24 V DC
- G 1/8" Eingangs- (Innengewinde) und Ausgangs- (Außengewinde) Anschluss
- inklusive O-Ring und Verbindungskabel mit M 8-Stecker für den Anschluss an den TURBOVAC i / iX Zubehöreingang

Belüftungsventil (zum Anschluss an den Belüftungsanschluss)

zum Belüften der Turbomolekular-Vakuumpumpe

- Das Ventil ist stromlos geschlossen

Stromausfallfluter (zum Anschluss an den Belüftungsanschluss)

zum Belüften der Turbomolekular-Vakuumpumpe

- Das Ventil ist stromlos offen

Sperrgasventil (zum Anschluss an den Sperrgasanschluss der Turbomole-kular-Pumpe)

zur Regulierung der Sperrgasmenge

- 24 sccm
- Das Ventil ist stromlos geschlossen

Sperrgasdrossel

zur passiven Regulierung der Sperrgasmenge

- G1/8" Eingangs- (Innengewinde) und Ausgangs- (Außengewinde) Anschluss
- Sperrgasdrossel 24 sccm

Luftfilter

zum Anschluss an die Ventile oder Drosseln

- Verhindert die Verschmutzung und das Verstopfen von Ventilen und Drosseln
- G1/8"

Y-Verteiler

 Erweitert den M 8-Zubehöranschluss der TURBOVAC i um einen weiteren Anschluss, um parallel 2 Zubehörgeräte anzusteuern. Beide Zubehörgeräte werden dabei synchron geschaltet

Montage- und Befestigungszubehör

Befestigungssatz zur sicheren Montage der Pumpe

Die Befestigungssätze enthalten: ISO-K-Kit (63, 100 und 160): Zentrierringe und Klammern ISO-F-Kit (100 und 160): Überwurfflansch, Außenring, Schrauben und Muttern CF-Kit (63, 100 und 160): 2 Kupferdichtungen, Schrauben, Muttern und Unterlegscheiben

Befestigungssätze (links ISO-KF, mitte ISO-F, rechts CF)

Zentrierring mit Splitterschutz (DN 63, 100 und 160 ISO-K/F)

Zentrierring mit Schutzgitter (DN 63, 100 und 160 ISO-K/F)

Splitterschutz (DN 63, 100 und 160 CF)

Schutzgitter (DN 63, 100 und 160 CF)

Zum Schutz der Pumpe vor eindringenden Gegenständen.

Schutzgitter Maschenweite 3,2 mm Splitterschutz Maschenweite 0,8 mm

Hinweis:

Schutzgitter und Splitterschutz bei ISO-K/F integriert im Zentrierring

Vibrationsdämpfer (DN 100/160 ISO-K und 100/160 CF)

Vermindert mögliche Schwingungsübertragungen von der Pumpe auf sensible Instrumente oder Apparaturen.

Software LEYASSIST *

Software für die Kommunikation, Steuerung und Überwachung von Turbomolekularpumpen über den PC via USB, RS 485 oder RS 232 Schnittstelle mit automatischer Pumpenerkennung.

Funktionen

- Anzeige Status des Vakuumsystems
- Trendanzeige
- Konfiguration Zubehörfunktionen der TURBOVAC i / iX
- Parameter auslesen/schreiben
- Datalogging
- Alarm-Warnmeldungs-Logging
- Schnittstelle verwendet USB (mit USB-Kabel 2.0, Typ A/B, 1,8 m lang), RS 485 oder RS 232 (mit Dongle)
 - Funktionen: Lesen/Schreiben von Parametern, Steuerung und Datenerfassung
- Erkennt automatisch bei Anschluss den Leybold-Pumpentyp oder Gerät
- Verschiedene Sprachen und Benutzerzugriffsebenen sind verfügbar

Bestelldaten

Software LEYASSIST für Turbomolekular-Vakuumpumpen

Kat.-Nr. 230439V01

 $^{^{\}ast}$ im Lieferumfang der TURBOVAC iX enthalten

Produkte

TURBOVAC mit Hybrid Rotor-Lagerung (mag./mech.)

mit integriertem Frequenzwandler TURBOVAC 90 i, 250 i, (T) 350 i und (T) 450 i

TURBOVAC 90 i (links), 250 i, (T) 350 i und (T) 450 i (rechts)

mit integriertem Frequenzwandler und integrierter Vakuumsystem-Steuereinheit TURBOVAC 90 iX, 250 iX, (T) 350 iX und (T) 450 iX

TURBOVAC 90 i X (links), 250 i X, (T) 350 i X und (T) 450 iX (rechts)

Typische Anwendungen

- Analytische Technologien/Forschung und Entwicklung
 - Massenspektrometer
 - Elektronenmikroskope
 - Oberflächenanalyse
 - Röntgenanalyse
 - Teilchenbeschleuniger und Synchrotrone
 - Laborbeschichtungssysteme
 - Molekularstrahlepitaxie
 - UHV-Systeme
- Biowissenschaften
 - Protonentherapie
 - Gammasterilisation
 - Herstellung hochqualitativer Implantate
- Industrie- und Beschichtungsanwendungen
 - Physikalische Gasphasenabscheidung (PVD)
 - Optische Beschichtungen
 - CD-/DVD-/Blu-Ray-Herstellung
 - Dünnschicht-Technologien, Fotovoltaik
- Schleusenkammern, Transferkammern und Handhabungssysteme
- Elektronenstrahlschweißeinrichtungen
- Isoliervakuum und Lecksuche

Technische Merkmale

TURBOVAC i

- Integrierte elektronische Antriebseinheit mit 24/48 V Gleichspannungsversorgung
- Die beste Pumpe ihrer Saugvermögens- und Kompressionsklasse insbesondere für leichte Gase
- Hohe Flexibilität der Vakuumanschlusskonstruktion
- Installation in beliebiger Orientierung
- Überragende Zuverlässigkeit aufgrund der innovativen Pumpen- und Lagerkonstruktion
- Die einzige wartungsfreie hybridmechanische Turbomolekularpumpe ohne Ölwechselnotwendigkeit
- Möglichkeit der Vor-Ort Wartung (Lageraustausch) zur Reduzierung von Wartungskosten und -zeit
- Vielzahl von Schnittstellenoptionen (USB, RS 485 und 15-pol. digitale I/O als Standard)
- Optimiertes Größen-Leistungs-Verhältnis auf Typ 100 und 160 Flanschen

Vorteile für den Anwender

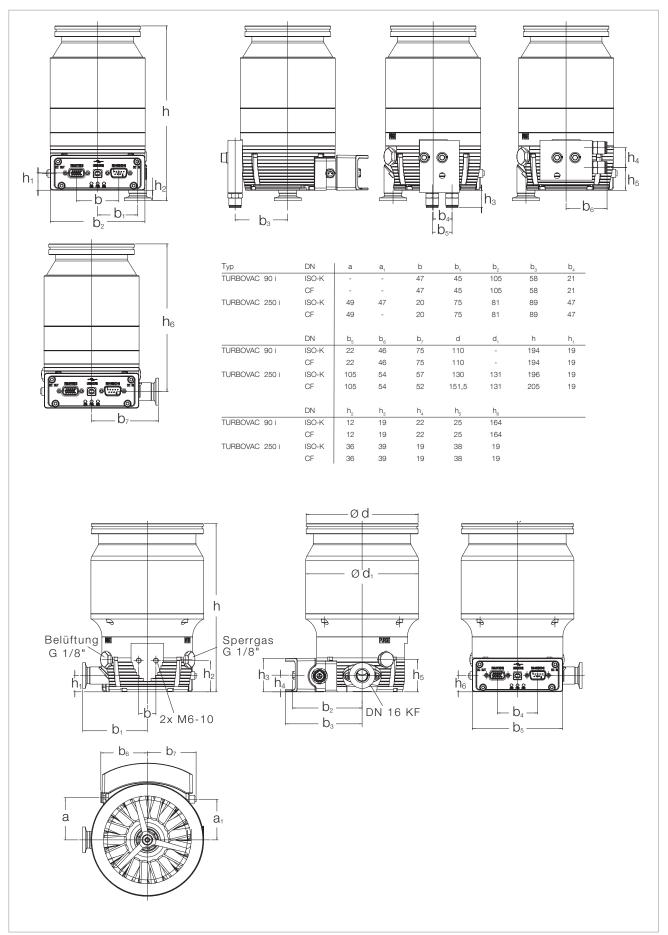
TURBOVAC i

- Beste Leistungsfähigkeit und Funktionalität für ihr Geld
- Maximale Benutzerflexibilität für einfache Systemintegration, Betrieb und Steuerung
- Höchste Produktivität und Systemverfügbarkeit bei niedrigsten Betriebskosten
- Verbesserte Auspumpzeiten und Enddrücke
- Hervorragende Pumpleistung bei leichten Gasen
- Verringerung/Verkleinerung des Vakuumsystems hinsichtlich Kosten und Abmessungen (Einsatz kleinerer Vorvakuumpumpen)

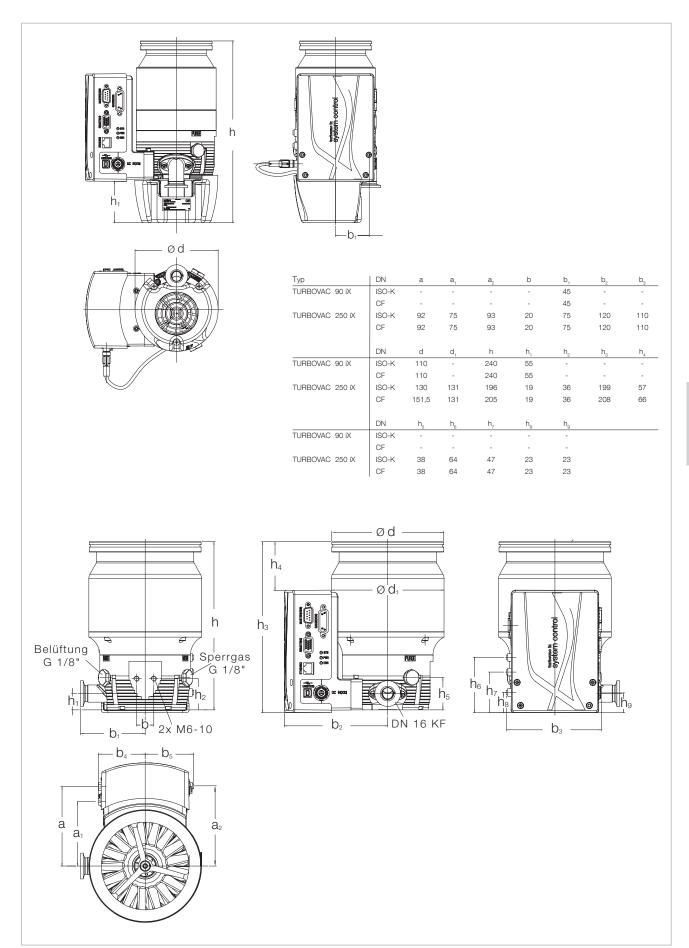
TURBOVAC iX

- Integrierte Vakuumsystemsteuerung mit flexiblen Schnittstellen und mehreren Zubehöranschlüssen zur Steuerung von Kühlgeräten, Ventilen, Messgeräten und Vorvakuumpumpen etc.
- Flexible Zubehörprogrammoptionen; nach Anschluss sofort betriebsbereit
- Flexibilität zur Anpassung an unterschiedliche Prozesse und Anwendungsanforderungen

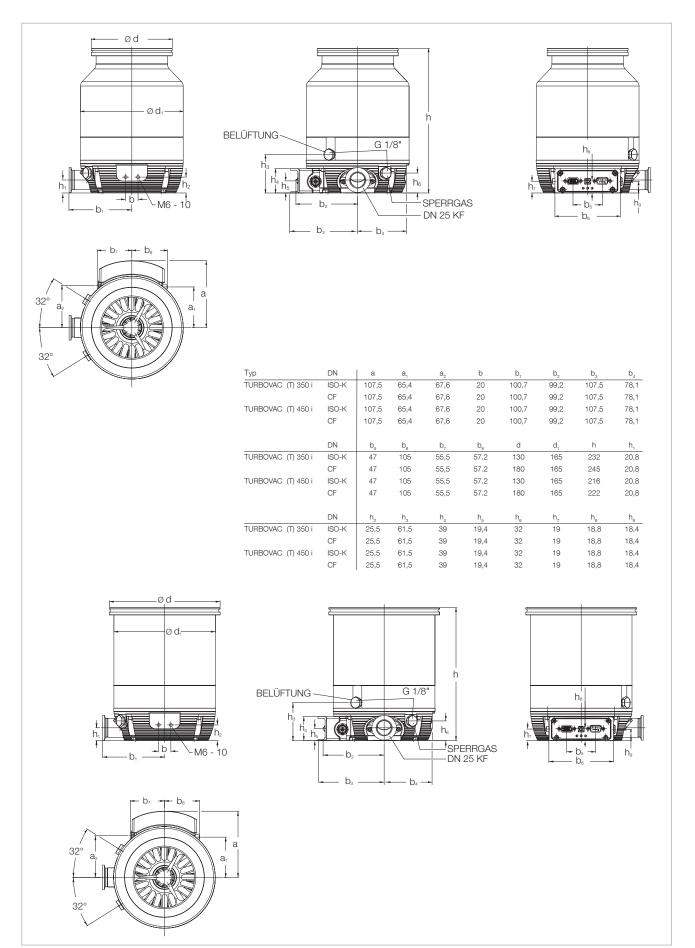
TURBOVAC iX

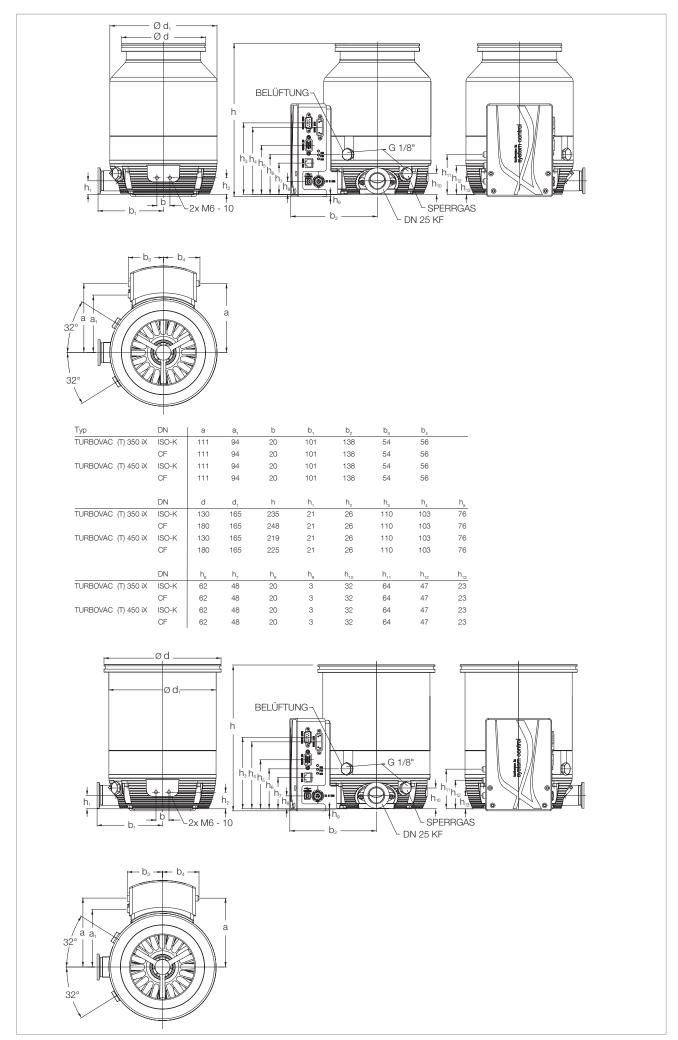

- Pumpsystemteuerung nach Anschluss sofort betriebsbereit
- Keine Extrakosten für separate Pumpsystemsteuerungen und Verkabelung

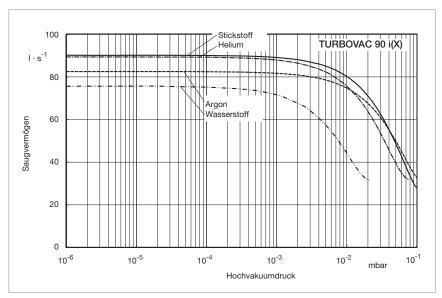
TURBOVAC Ti, TiX

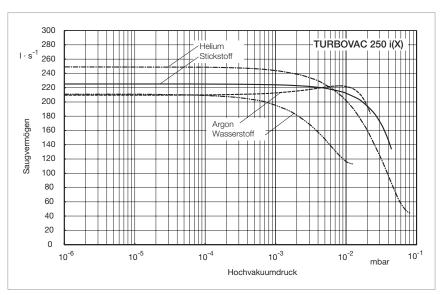

- Variante ohne Compoundstufe
- Erhöhter Gasdurchsatz
- Verbesserte Toleranz gegenüber
 Staub und Partikeln
- Schnelle Hochlaufzeit

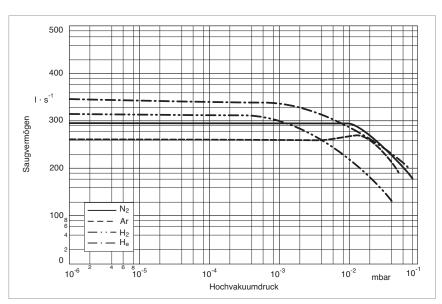
TURBOVAC Ti, TiX

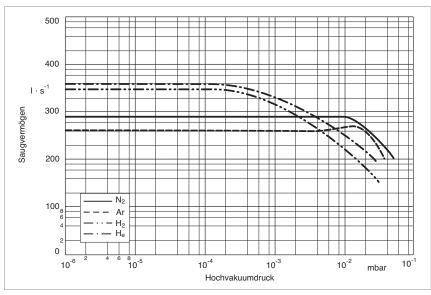

- Geeignet für anspruchsvolle Prozessanwendungen und den Betrieb bei hohen Durchsätzen
- Kurztaktbetrieb und Abpumpen sind möglich

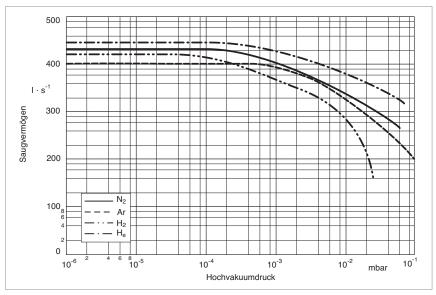

Maßzeichnung zu den TURBOVAC-Pumpen, 90 i oben und 250 i unten (Maße in mm)

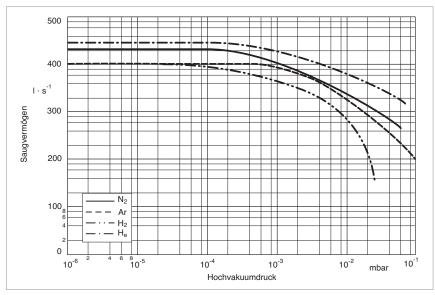

Maßzeichnung zu den TURBOVAC-Pumpen, 90 iX oben und 250 iX unten (Maße in mm)


Maßzeichnung zu den TURBOVAC (T)-Pumpen, 350 i oben und 450 i unten (Maße in mm)


Maßzeichnung zu den TURBOVAC (T)-Pumpen, 350 iX oben und (T) 450 iX unten (Maße in mm)


Saugvermögen in Abhängigkeit vom Einlass-Druck für die TURBOVAC 90 i (DN 63 Flansch)


Saugvermögen in Abhängigkeit vom Einlass-Druck für die TURBOVAC 250 i


Saugvermögen in Abhängigkeit vom Einlass-Druck für die TURBOVAC 350 i

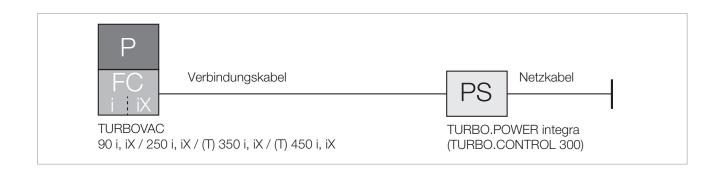
Saugvermögen in Abhängigkeit vom Einlass-Druck für die TURBOVAC T $350\ i$

Saugvermögen in Abhängigkeit vom Einlass-Druck für die TURBOVAC 450 i

Saugvermögen in Abhängigkeit vom Einlass-Druck für die TURBOVAC T 450 i

Technische Daten

TURBOVAC


63 CF			90 i/iX	250 i/iX	350 i/iX	450 i/iX	T 350 i/iX	T 450 i/iX	
No	Hochvakuum-Flansch	DN						160 ISO-K	
Saugvermögen									
N _s Vs 90 225 290 430 290 4430 Ar Vs 83 210 260 400 260 400 He Vs 90 250 360 440 260 400 H _s Vs 78 210 350 420 320 400 Gasdurchstz N ₂ mbar · Vs 10 6 4,5 4,5 11,5 11,5 11,5 Ar mbar · Vs 11 6 8 8 20 20 Kompressionsverhältnis N 1 · 10 ¹¹ 1 · 10 ¹¹ 1 · 10 ¹¹ 1 · 10 ¹¹ 1 · 10 ¹⁰ <		DN	16 ISO-KF	16 ISO-KF	25 ISO-KF	25 ISO-KF	25 ISO-KF	25 ISO-KF	
Ar V/s 83 210 260 400 260 440 400 440 400 440 400 440 400									
He				225		430		430	
H₂ I/s 78 210 350 420 320 400 Gasdurchsatz N₂ mbar · I/s 10 6 4,5 4,5 11,5 12 2 2 2 1,5 1,0 1,1 1,0 1,0 1,0 1	Ar			210		400		400	
N2		l/s	90	250	360	440	360	440	
N₂	H_2	l/s	78	210	350	420	320	400	
Ar mbar ⋅ Vs mbar ⋅ Vs 111 6 8 8 20 20 He mbar ⋅ Vs 111 6 8 8 20 20 Kompressionsverhältnis N2 1 ⋅ 10 ¹¹	Gasdurchsatz								
He Hg kg mbar ⋅ Vs mbar ⋅ Vs mbar ⋅ Vs 11 mbar ⋅ Vs 12 mbar ⋅ Vs <th< td=""><td>N_2</td><th>mbar · I/s</th><td>10</td><td>6</td><td>4,5</td><td>4,5</td><td>11,5</td><td>11,5</td></th<>	N_2	mbar · I/s	10	6	4,5	4,5	11,5	11,5	
H₂ mbar ⋅ /s 11 > 10 8 8 20 20 Kompressionsverhältnis N₂ arr 1 ⋅ 10¹¹¹ 1 ⋅ 10¹¹ 1 ⋅ 10¹² 2 ⋅ 10² 2 ⋅ 10² 2 ⋅ 10² 2 ⋅ 10² 2 ⋅ 10² 2 ⋅ 10² 2 ⋅ 10² 2 ⋅ 10² 2 ⋅ 10² 2 ⋅ 10² 2 ⋅ 10²<	Ar	mbar · I/s	3	3	2	2	6	6	
Kompressionsverhältnis	He	mbar · I/s	11	6	8	8	20	20	
N₂ Ar 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹ 1 · 10¹¹¹ 1 · 10¹¹¹ 1 · 10¹¹ 1 · 10¹¹ 1 · 10¹¹¹ 1 · 10²¹ 1 · 10¹¹ 1 · 10¹¹ 1 · 10¹² 1 · 10¹¹ 1 · 10¹² 1 · 10¹² 1 · 10¹² 1 · 10²¹ 1 · 10²¹ 1 · 10¹² 1 · 10²² 2 · 10² 2 · 10² 2 · 10² 2 · 10² 2 · 10² 2 · 10² 2 · 10² 2 · 10² 3 · 10² 3 · 10² 3 · 10² 3 · 10² 3 · 10² 3 · 10² <td>H_2</td> <th>mbar · l/s</th> <td>11</td> <td>> 10</td> <td>8</td> <td>8</td> <td>20</td> <td>20</td>	H_2	mbar · l/s	11	> 10	8	8	20	20	
Ar	Kompressionsverhältnis								
Ar	N ₂		1 · 1011	1 · 1011	1 · 1011	1 · 1011	1 · 1010	1 · 1010	
H₂ 5 ⋅ 10² 2 ⋅ 10² 1 ⋅ 106 1 ⋅ 106 1 ⋅ 104 1 ⋅ 104 1 ⋅ 104 Enddruck mit 2-stufiger ölgedichteter Drehschieber-Vakuumpumpe ISO-K / CF Flansch Bock / CF Flansch SC 8 ⋅ 108 / < 5 ⋅ 1010	=		1 · 10 ¹¹	1 · 10 ¹¹	1 · 10 ¹¹	1 · 1011	1 · 10 ¹¹	1 · 1011	
Enddruck mit 2-stufiger ölgedichteter Drehschieber- Vakuumpumpe ISO-K / CF Flansch mbar Max. Vorvakuum-Druck N₂ mbar TRIVAC SCROLLU/AC SCROL	He		_	-	1 · 108	1 · 108	1 · 106	1 · 106	
Enddruck mit 2-stufiger ölgedichteter Drehschieber-Vakuumpumpe ISO-K / CF Flansch mbar Max. Vorvakuum-Druck N₂ mbar TRIVAC D 2,5 E / D 4 B D 2,5 E / D 4 B D 4 B D 4 B D 16 B SCROLLVAC SCROLLVAC SC 5 D SC 5 D / 15 D SC 5 D	H_2		5 · 10 ⁷	2 · 107	1 · 106	1 · 106	1 · 104	1 · 104	
ölgedichteter Drehschieber-Vakuumpumpe ISO-K / CF Flansch mbar	Enddruck mit 2-stufiger			I	I	l	I	I	
Vakuumpumpe ISO-K / CF Flansch mbar	•	-							
ISO-K / CF Flansch mbar	-								
Max. Vorvakuum-Druck N₂ mbar 14 14 10 10 0,5 0,5 Empfohlene Vorvakuumpumpen TRIVAC SC 5D / SC 5D / Is D SC 15D / Is D SC 5D / Is D SC 15D / I	• •	mbar	< 8 · 10 ⁻⁸ / < 5 · 10 ⁻¹⁰						
TRIVAC D 2,5 E / D 4 B D 2,5 E / D 4 B D 4 B D 4 B D 4 B D 4 B D 16 B D 16 B D 16 B SCROLLVAC SC 5 D DIVAC	Max. Vorvakuum-Druck								
Empfohlene Vorvakuumpumpen TRIVAC SC 5 D D 2,5 E / D 4 B D 2,5 E / D 4 B D 4 B D 4 B D 4 B D 16 B D 16 B SC 5 D / D 10 A B SC 5 D / 15 D SC 15 D / 30 D	N _o	mbar	14	14	10	10	0,5	0,5	
TRIVAC SCROLLVAC SCROLLVAC SC 5 D SC 5 D / 15 D SC 15 D / 30		npen							
SCROLLVAC DIVAC 1.4 HV3 3.8		-	D 2,5 E / D 4 B	D 2,5 E / D 4 B	D 4 B	D4B	D 16 B	D 16 B	
DIVAC 1.4 HV3 3.8 HV3 3.8 HV3 3.8 HV3 -						SC 5 D / 15 D	SC 15 D / 30 D		
Nenndrehzahl min¹ 72 000 72 000 60 000 60 000 60 000 60 000 60 000 60 000 60 000 60 000 60 000 60 000 60 000 60 000 60 000 60 000 60 000 60 000 60 000 50 bis 100 50		DIVAC	1.4 HV3	3.8 HV3	3.8 HV3	3.8 HV3	_	_	
Hochlaufzeit, ca. min 1,5 2 5,5 5,5 3,5 3,5 Zulässige Umgebungstemperatur bei Betrieb °C +5 bis +45 +5 bis +45 bei Lagerung Kühlung Standard Konvektion optional Luft oder Wasser Kühlwassereranschluss alternativ Steckanschluss für 6 x 1 Schlauch G 1/8" Einschraubgewinde Kühlwassererverbrauch I/h 30 bis 60 30 bis 100 50 bis 100	Nenndrehzahl	min ⁻¹	72 000	72 000	60 000	60 000	60 000	60 000	
Hochlaufzeit, ca. min 1,5 2 5,5 5,5 3,5 3,5 Zulässige Umgebungstemperatur bei Betrieb °C +5 bis +45 +5 bis +45 bei Lagerung Kühlung Standard Konvektion optional Luft oder Wasser Kühlwassereranschluss alternativ Steckanschluss für 6 x 1 Schlauch G 1/8" Einschraubgewinde Kühlwassererverbrauch I/h 30 bis 60 30 bis 100 50 bis 100	Drehzahlanpassung	%	62 bis 100	62 bis 100	50 bis 100	50 bis 100	50 bis 100	50 bis 100	
Zulässige Umgebungstemperatur bei Betrieb °C bei Lagerung +5 bis +45 bis +45 bis -70 Kühlung Standard optional Konvektion Luft oder Wasser Kühlwassereranschluss alternativ Steckanschluss für 6 x 1 Schlauch G 1/8" Einschraubgewinde Kühlwassererverbrauch I/h 30 bis 60 30 bis 60 50 bis 100									
bei Betrieb °C bei Lagerung Kühlung Standard optional Kühlwassereranschluss alternativ Kühlwassererverbrauch Vh 30 bis 60 30 bis 60 50 bis 100 50 bis 100 50 bis 100 50 bis 100 Zulässige Kühlwassertemperatur °C Geräuschpegel mit Konvektionskühlung db(A) < 41 < 41 < 44 < 44 < 44 < 44 < 44 < 4			1,0		0,0	0,0	0,0	0,0	
bei Lagerung Kühlung Konvektion Standard Konvektion optional Luft oder Wasser Kühlwassereranschluss alternativ Steckanschluss für 6 x 1 Schlauch G 1/8" Einschraubgewinde Kühlwassererverbrauch I/h 30 bis 60 30 bis 60 50 bis 100 50 bis 100 <th< td=""><td></td><th></th><td></td><td></td><td>+5 bi</td><td>s +45</td><td></td><td></td></th<>					+5 bi	s +45			
Kühlung Standard optional Konvektion Luft oder Wasser Kühlwassereranschluss alternativ Steckanschluss für 6 x 1 Schlauch G 1/8" Einschraubgewinde Kühlwassererverbrauch I/h 30 bis 60 30 bis 60 50 bis 100 50 bis 1									
Standard optional Konvektion Kühlwassereranschluss alternativ Steckanschluss für 6 x 1 Schlauch Kühlwassererverbrauch I/h 30 bis 60 30 bis 60 50 bis 100 50						.0 .0			
optional Luft oder Wasser Kühlwassereranschluss alternativ Steckanschluss für 6 x 1 Schlauch G 1/8" Einschraubgewinde Kühlwassererverbrauch I/h 30 bis 60 30 bis 60 50 bis 100			Konyaktion						
Kühlwassereranschluss alternativ Steckanschluss für 6 x 1 Schlauch G 1/8" Einschraubgewinde Kühlwassererverbrauch I/h 30 bis 60 30 bis 60 50 bis 100									
alternativ G 1/8" Einschraubgewinde Kühlwassereverbrauch I/h 30 bis 60 30 bis 60 50 bis 100 50 bi	<u> </u>								
Zulässiger Kühlwasserdruck bar(g) 3 bis 6 Zulässige Kühlwassertemperatur °C +15 bis +35 Geräuschpegel Konvektionskühlung db(A) < 41 < 44 < 44 < 44 < 44 < 44 < 44 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 48 < 48 < 48 < 48 < 48 < 48 < 48 < 48 < 48 < 48 < 48 < 48 < 48 < 48 < 48 < 48 < 48 < 48									
Zulässige Kühlwassertemperatur °C +15 bis +35 Geräuschpegel mit Konvektionskühlung db(A) < 41 < 41 < 44 < 44 < 44 < 44 < 44 < 4	Kühlwassererverbrauch	l/h	30 bis 60	30 bis 60	50 bis 100	50 bis 100	50 bis 100	50 bis 100	
Geräuschpegel db(A) < 41 < 41 < 44 < 44 < 44 < 44 < 44 < 44 < 44 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47 < 47	Zulässiger Kühlwasserdruc	k bar(g)			3 b	is 6			
mit Konvektionskühlung db(A) < 41 < 41 < 44 < 44 < 44 < 44 < 44 < 47 < 47 < 47 < 47	Zulässige Kühlwassertemp	eratur °C			+15 b	is +35			
mit Konvektionskühlung db(A) < 41 < 41 < 44 < 44 < 44 < 44 < 44 < 47 < 47 < 47 < 47	Geräuschpegel								
` '		db(A)	< 41	< 41	< 44	< 44	< 44	< 44	
	mit Radiallüfter	db(A)	< 44	< 44	< 47	< 47	< 47	< 47	
	mit Axialkühler		< 49	< 49	< 49	< 49	< 49	< 49	
	THE POLICE OF THE PROPERTY OF	ab(A)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \	\ \ \	\ \ \	\ \ \	\ \ -3	

Zusätzliche Technische Daten für den Frequenzwandler

TURBOVAC

(i-Version)	90 i	250 i	350 i	450 i	T 350 i	T 450 i		
Technische Daten für die integrierte Antriebselektronik								
Netzanschluss V DC		24/48 ±10%						
Max. Stromaufnahme A		10 bei 24 V DC						
Max. Leistungsaufnahme W	240							
Leistungsaufnahme bei Enddruck W	20							
Schutzart IP	40							
Schnittstellen	RS 485, USB,							
	15-pin digital I/O							
Andere Schnittstellen	Auf Anfrage							
Zubehöranschluss	1 Stück M 8-Stecker, 24 V DC							
Gewicht ISO-K / CF kg	3,1 / 4,8	4 / 6,6	7,5 / 11,5	7,7 / 12,5	7,0 / 11,0	7,2 / 12,0		

Zusätzliche Technische Date für den Frequenzwandler	en	TURBOVAC							
(iX-Version)	90 iX	250 iX	350 iX	450 iX	T 350 iX	T 450 iX			
Technische Daten für die integrierte Antriebselektronik und die Vakuumsystem-Steuereinheit									
Netzanschluss V D0		24/48 ±10%							
Max. Stromaufnahme	Α	10 bei 24 V DC							
Max. Leistungsaufnahme V	v	240							
Leistungsaufnahme bei Enddruck V	V		2	10					
Schutzart II	P		4	-0					
Schnittstellen	US	USB+,15 pin Standard, Anybus (wahlweise RS 485, RS 232, Profibus,)							
Zubehöranschluss		3 Stück M 8-Stecker, 24 V DC							
Max. Belastung des 24 V DC-Ausgange (Versorgung Kühlung oder Ventile) V / V		24 / max. 12							
Anschluss Messröhre		15-pol Sub-D							
Gewicht ISO-K / CF kg	3,6 / 5,3	4,5 / 7,1	8,0 / 12,0	8,2 / 13,0	7,5 / 11,5	7,7 / 12,5			

Bestelldaten TURBOVAC

	90 i	250 i	350 i	450 i	T 350 i	T 450 i	
	KatNr.	KatNr.	KatNr.	KatNr.	KatNr.	KatNr.	
TURBOVAC mit integriertem Frequenzwandler, RS 485, USB+ und 15-Pin digital I/O-Schnittstelle DN 40 ISO-K	810011V1000	_	_	_	_	_	
DN 63 ISO-K	810031V1000	_	_	_	_	_	
DN 63 CF	810041V1000	_	_	_	_	_	
DN 100 ISO-K	_	820051V1000	830051V1000	_	830050V1000	_	
DN 100 CF	_	820061V1000	830061V1000	_	830060V1000	_	
DN 160 ISO-K	_	_	_	830071V1000	_	830070V1000	
DN 160 CF	_	_	_	830081V1000	_	830080V1000	
Andere Schnittstellen	auf Anfrage						

Wide Range

		Wide	Classic			
	90 iX	250 iX	350 iX	450 iX	T 350 iX	T 450 iX
	KatNr.	KatNr.	KatNr.	KatNr.	KatNr.	KatNr.
TURBOVAC mit integriertem Frequenzwandler und Vakuumsystem-Steuereinheit, RS 485, USB+ und 15-Pin digital I/O-Schnittstelle DN 63 ISO-K	810031V3300	_	_	_	_	_
DN 63 CF	810041V3300	_	_	_	_	_
DN 100 ISO-K	_	820051V3300	830051V3300	_	830050V3300	_
DN 100 CF	_	820061V3300	830061V3300	_	830060V3300	_
DN 160 ISO-K	_	_	_	830071V3300	_	830070V3300
DN 160 CF	_	_	_	830081V3300	_	830080V3300
Andere Schnittstellen			auf Anfrage			

Lieferumfang Pumpe

Hoch- und Vorvakuumflansch sind mit Schutzkappen verschlossen

Die Flansch-Befestigungselemente und der Splitterschutz gehören nicht zum Lieferumfang

Bestelldaten TURBOVAC (T)

90 i, iX / 250 i, iX / 350 i, iX / 450 i, iX

Classic

Erforderliches Zubehör	KatNr.
Netzteil TURBO.POWER integra, inklusive 0,3 m Kabel	800100V0003
Netzkabel, 3 m (für TURBO.POWER, TURBO.CONTROL und Heizmanschetten)	
EU-Stecker	800102V0002
UK-Stecker	800102V0003
US-Stecker 5-15P, 115 V	800102V1002
Verbindungskabel Pumpe – TURBO.POWER integra	
1 m	800096V0100
3 m	800096V0300
5 m	800096V0500
Befestigungssatz TURBOVAC	
DN 63 ISO-K	800134V0010
DN 100 ISO-K	800134V0020
DN 160 ISO-K	800134V0030
DN 100 ISO-K auf ISO-F	800134V0025
DN 160 ISO-K auf ISO-F	800134V0035
DN 63 CF	800134V0011
DN 100 CF	800134V0021
DN 160 CF	800134V0031

Vorvakuum-Pumpen TRIVAC D 4 B und TRIVAC D 16 B siehe Katalogteil "Ölgedichtete Vakuumpumpen"

Vorvakuum-Pumpen SCROLLVAC 7 plus bis SCROLLVAC 18 plus und DIVAC 3.8 HV3 siehe Katalogteil "Trockenverdichtende Vakuumpumpen"

	90 i, iX / 250 i, iX / 350 i, iX / 450 i, iX
Optionales Zubehör	P KatNr.
Netzgerät, Kabel, sonstiges Zubehör	
24 V DC Display Einheit TURBO.CONTROL i	800100V0004
Stecker-Netzteil 24 V/DC – TURBO.CONTROL i	800110V0027
Standard Kabel für die Kommunikation – TURBO.CONTROL i	200440V0400
USB Kabel 2.0 Typ A/B, 1,8 m RS485 Kabel, 5 m	800110V0108 800103V0029
RS485 Kabel, 1 m	800103V0027
Netz- und Steuergerät TURBO.CONTROL 300	800100V0001
Verbindungskabel Pumpe – TURBO.CONTROL 300	
1 m	800092V0100
3 m 5 m	800092V0300 800092V0500
	80009240300
Verlängerungskabel (nur in Kombination mit Verbindungskabel 1 m) 10 m	800092V1000
20 m	800092V2000
24/48 V DC-In Stecker TURBOVAC	800090V0000
USB-Kabel 2.0, Typ A/B, 1,8 m lang	800110V0108
Y-Verteiler M 8	800110V0020
Relaisbox für Vorpumpe, 1-phasig, 10 A	800110V0030
Start-Stopp-Schalter	800110V0021
Kühlung	
Lüftkühler TURBOVAC 90 i(X)	
radial	800136V0007
axial	800136V0008
TURBOVAC 250 i(X)	
radial	800136V0009
axial TURBOVAC 350/450 i(X)	800136V0008
radial	800136V0005
axial	800136V0006
Wasserkühlung TURBOVAC i(X), Schlauchanschluss 1/8"	800135V0005
Wasserkühlung TURBOVAC i(X), Schlauchanschluss 1/4"	800135V0006
Belüftung und Sperrgas	
Belüftungsventil, 24 V DC, G 1/8"	800120V0012
Stromausfallfluter, 24 V DC, G 1/8"	800120V0022
Sperrgasventil, 24 V DC, G 1/8", 24 sccm	800120V0013
Sperrgasdrossel, 24 sccm	800120V0014
Luftfilter, G 1/8" Heizung	800110V0022
Heizmanschette (benötigt Netzkabel, s.o.)	
DN 63 CF, 230 V	800137V0003
DN 63 CF, 115 V	800137V0004
DN 100 CF, 230 V	800137V0005
DN 100 CF, 115 V	800137V0006
DN 160 CF, 230 V	800137V0007
DN 160 CF, 115 V Installation	800137V0008
Vibrationsdämpfer	
DN 100 ISO-K	800131V1100
DN 160 ISO-K	500073
DN 100 CF	500071
DN 160 CF	500072
Zentrierring mit Splitterschutz, Maschenweite 0,8 mm	
DN 63 ISO-K/F	800133V0012
DN 100 ISO-K/F	800133V0022
DN 160 ISO-K/F	800133V0032
mit Schutzgitter, Maschenweite 3,2 mm	
DN 63 ISO-K/F	800133V0011
DN 100 ISO-K/F	800133V0021
DN 160 ISO-K/F Splitterschutz, Maschenweite 0,8 mm	800133V0031
DN 63 CF	800132V0012
DN 100 CF	800132V0022
DN 160 CF	800132V0032
Schutzgitter, Maschenweite 3,2 mm	
DN 63 CF	800132V0011
DN 100 CF	800132V0021
DN 160 CF	800132V0031

Spezial Turbomolekular-Vakuumpumpen

TURBOVAC i Multi Inlet Kartusche

Bei analytischen Instrumenten spielt Präzision die entscheidende Rolle.

Mit zwei oder mehr Einlässen ausgestattet, bieten unsere Turbopumpen, mit integrierter Antriebselektronik nicht nur eine hervorragende Pumpleistung, sondern sind auch flexibel an die Systemanforderungen verschiedenster Instrumente anpassbar.

In Kombination mit unserem maßgeschneiderten Support für die Konzeption Ihres Vakuumsystems wird ein höchster Level an Pumpsystemintegration erreicht.

TURBOVAC i Multi Inlet Kartusche

Die TURBOVAC 350-400 i Multi Inlet wurde speziell für die Anforderungen beim Einsatz analytischer Instrumente entwickelt und bietet ein extrem hohes Maß an Flexibilität, das ermöglicht, die Anzahl, Höhe und Position der Vakuumanschlüsse individuell festzulegen. Dadurch kann die Pumpe perfekt an die jeweiligen Bedürfnisse und Systemvoraussetzungen angepasst werden.

Zusätzlich können Sie unsere Expertise in der Entwicklung von Vakuumsystemen nutzen und so von zahlreichen weiteren Optionen profitieren. Wir unterstützen Sie von der Adaption Ihres Pumpgehäuses oder Ihrer Vakuumkammer bis hin zum Entwurf eines für Sie maßgeschneiderten Vakuumsystems, das genau Ihren Ansprüchen entspricht.

Ihr Vorteil

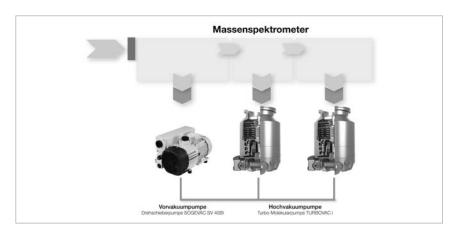
- Optimale Integration der Pumpe(n) in Ihr Instrument.
- Reduzierung der Systemkosten
- Verkleinerung des Analysesystems
- Reduzierung der Anzahl an Einzel-Vakuumkomponenten
- Wahlmöglichkeit zwischen Cartridge oder kundenspezifischem Pumpengehäuse

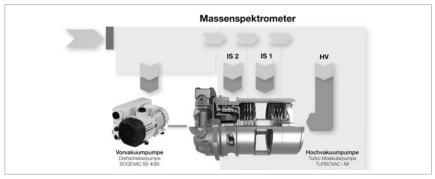
Um Installation und Betrieb zu vereinfachen, verfügen alle TURBOVAC i-Varianten über einen integrierten elektronischen Antrieb mit direkter 24/48 V DC-Versorgung sowie einer abnehmbaren Schnittstelle mit USB-, RS 485- und digitalen I/O-Ports.

Leistung

- Branchenbestes Saugvermögen insbesondere für leichte Gase (bis zu 60 % höher als derzeitige Produkte)
- Optimierter Rotor-Durchmesser für maximale Pumpleistung
- > 40 l/s Saugvermögen am Interstage Port 2

Flexibilität


- Individualisierbares Design der Vakuumanschlüsse
 - Drehbarer Vorvakuumanschluss
 - Mehrfache Zwischenanschlüsse verfügbar
 - Flexible Platzierung der Vakuumanschlüsse in Bezug auf Höhe und Position
- Einzigartiges Kartuschendesign für optimierte Systemintegration und schnellen und einfachen Austausch vor Ort
- Spezielle und auf Ihr Instrument angepasste Pumpgehäuse-Lösungen
- Komplette Konzeption Ihres Vakuum-Systems inklusive Ihrer Vakuum-Kammer
- Variables Rotor- und Holweck-Design zur Anpassung der Leistung an Ihre Anwendung


Installation, Betrieb und Steuerung

- Integrierte Antriebselektronik mit 24/48 V DC-Versorgung vermeidet kostenintensive Verkabelung
- Breites Angebot an Schnittstellen: USB, RS 485 und Remote 15 pin digital I/O als Standardoptionen
- Hocheffizienter Motor
- Optimiertes thermisches Design für bestmögliche Kühlung der Lager und verlängerte Laufzeit der Pumpe
- Innovatives Lagersystem zur Reduzierung von Vibrationen
- Wartungsfreies oberes Permanentmagnetlager
- Ölfreies, lebensdauergeschmiertes unteres mechanisches Keramikkugellager, vor Ort austauschbar

Betriebseffizienz

Dank seines variablen Rotor- und Drag-Stufen-Designs überzeugt die Multi Inlet-Produktlinie durch klassenbeste Leistung für alle Massenspektrometer-Anwendungen. Mit verbessertem Saugvermögen vor allem für leichte Gase, das bis zu 60 % über dem von anderen am Markt erhältlichen Produkten liegt, bietet TURBOVAC 350-400 i Multi Inlet erhebliche Vorteile für Analyse-Instrumente: niedrigeren Druck, deutlich verbesserte Detektionsempfindlichkeit und höheren Probendurchsatz – und das ohne Abstriche bei der Zuverlässigkeit.

Überdurchschnittliche Zuverlässigkeit

Die einzigartige wartungs- und ölfreie Hybridlagerung mit Schmierung auf Lebensdauer zeichnet sich durch extreme Zuverlässigkeit und Haltbarkeit aus und macht Regelwartungen durch Ölwechsel überflüssig.

Das Lagersystem sorgt für einen vibrations- und geräuschfreien Betrieb und so für wenig Beanspruchung oder negative Auswirkungen bei vibrationsempfindlichen Anwendungen. Optimale Kühlung der Lager wird durch das opti-

mierte thermische Pumpendesign gewährleistet. Um die Lager vor kritischen Gasen oder Partikeln zu schützen, sind alle Pumpen mit einem Sperrgasanschluss ausgestattet. Dadurch wird nicht nur die Laufzeit der Pumpe deutlich erhöht, sondern auch die Anlagenverfügbarkeit – und damit die Produktivität. Zusammen mit den geringen Betriebskosten wird Ihr Vakuumsystem so effizienter und günstiger als jemals zuvor.

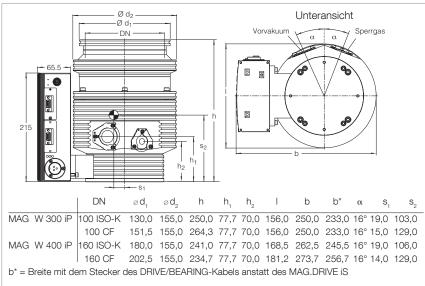
Vorteile für den Anwender

- Hoher Gasdurchsatz
- Hohes effektives Saugvermögen
- Hohe Effizienz für Analysegeräte:
- Große Nachweisempfindlichkeit
- Großer Probendurchsatz
- Kohlenwasserstofffrei
- Vibrationsarm durch Hybridlagerung
- Platz- und gewichtssparend
- Komponentensparend
- Günstiges Preis-Leistungs-Verhältnis
- Montage- und bedienungsfreundlich
- Praktisch wartungsfrei

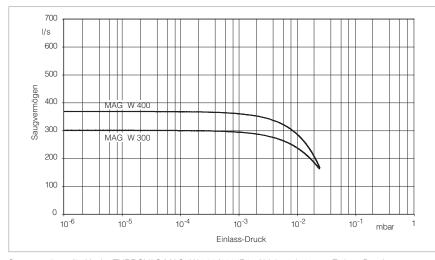
Typische Anwendungen

Zum Beispiel

- LC-MS (Kopplung eines Flüssigkeits-Chromatographen mit einem Massenspektrometer)
- GC/MS (Kopplung eines Gas-Chromatograhen mit einem Massenspektrometer)
- TOF-MS (Time of Flight Massenspektrometer)
- CP-MS (Induktiv-gekoppeltes Plasma-Massenspektrometrie)
- Helium-Lecksucher


Technische Merkmale

- Dual Inlet (Abpumpen von 2 Analysenkammern)
- Triple Inlet (Abpumpen von 3 Analysenkammen)
- Hohes effektives Saugvermögen HV-Stufe bis zu 400 l/s Interstage IS 1 bis zu 300 l/s Interstage IS 2 bis zu 50 l/s
- Cartridge (ohne Pumpengehäuse)
 Lösungen verfügbar
- Kompaktes Vakuumsystem


Technische Ausführung nach Kundenwunsch: auf Anfrage

MAG INTEGRA - Magnetische Rotor-Lagerung mit integriertem Frequenzwandler, mit Compound-Stufe TURBOVAC MAG W 300/400 iP

Maßzeichnung für die TURBOVAC MAG W 300/400 iP

Saugvermögen für $\mathrm{N_2}$ der TURBOVAC MAG $\,$ W 300/400 iP in Abhängigkeit vom Einlass-Druck

Typische Anwendungen

- Gasanalysen-Systeme
- Teilchen-Beschleuniger
- Elektronen-Mikroskope
- Forschung
- Beschichtungs-Anlagen

Technische Merkmale

- Beliebige Einbaulage
- DN 100 oder 160 in ISO-K und/oder CF Hochvakuum-Anschluss
- DN 16 ISO-KF mit Klammerschuh-Vorvakuum-Anschluss
- Spülgas- / Belüftungs-Anschluss
 DN 16 ISO-KF mit Klammerschuh (Purge/Vent)
- Wasser- oder Luftkühlung optional
- Zwei Steckplätze für industrielle Kommunikationsmodule
 - Standard 9-Pin 24 V SPS (PLC)-IO im Control Slot
 - RS 232 C im Service Slot
 - weitere Schnittstellen möglich: ProfiBus, RS 485 C, DeviceNet, EtherNet IP, EtherCat

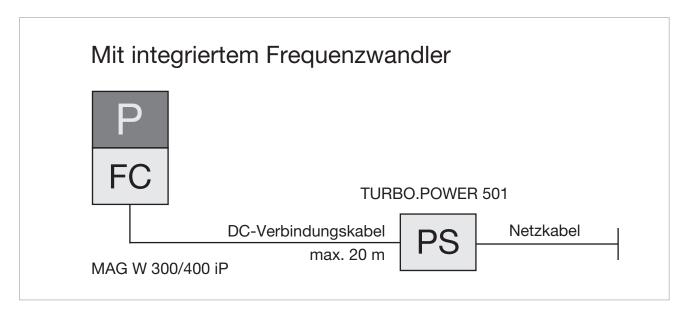
Vorteile für den Anwender

- Höchstes Saugvermögen bei kleinsten Konstruktionsmaßen
- Setzt neue Benchmarks bei wartungsfreien Systemen
- Eignung für schwingungsempfindliche Anwendungen der Analysentechnik, Dünnschichttechnik, Elektronenmikroskopen, Forschung, Entwicklung, u.a.
- Flexibilität durch das modulare Konzept; der Wandler ist wahlweise auch als Tischgerät erhältlich

TURBOVAC MAG

		W 30	00 iP	W 40	0 iP
Hochvakuum-Anschluss	DN	100 ISO-K	100 CF	160 ISO-K	160 CF
Saugvermögen					
N_2	l/s	300	300	365	365
Ar	l/s	260	260	330	330
He	l/s	260	260	280	280
H ₂	l/s	190	190	200	200
Drehzahl	min ⁻¹	58 800			
Kompression					
$N_{\scriptscriptstyle 2}$				1010	
$H_{\scriptscriptstyle 2}$		$3.2 \cdot 10^{3}$			
He			9,2	· 10 ⁴	
Enddruck	mbar	< 10 ⁻⁸	< 10 ⁻¹⁰	< 10 ⁻⁸	< 10 ⁻¹⁰
Max. Ausheiztemperatur	°C	-	80	-	80
Max. Vorvakuum-Druck für N ₂	mbar	8			
Empfohlene Vorvakuumpumpe		TRIVAC D 2,5 E			
			TRIVAC	D8B	
Hochlaufzeit	min	< 5			
Vorvakuum-Anschluss (Klammerschuh)	DN	16 ISO-KF			
Sperrgas- / Belüftungs-Anschluss					
(Klammerschuh)	DN	16 ISO-KF			
Wasserkühlungs-Anschluss (Option)	G	1/8"			
Gewicht, ca.	kg	12			

Technische Daten

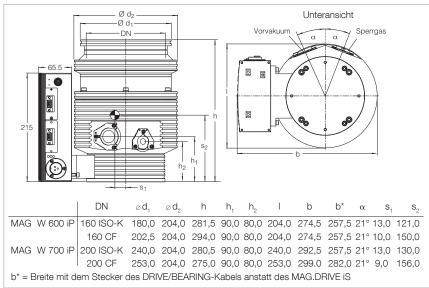

Integrierter Frequenzwandler

TURBO.DRIVE iS

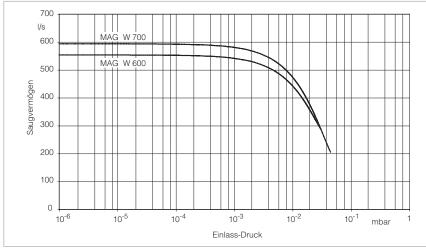
Spannungsversorgung	٧	48
Restwelligkeit	%	< 2
Leistungsaufnahme		
Maximum	W	400
bei Enddruck	W	259
DC-Stromaufnahme, max.	Α	7,5 bis 9,3
DC-Versorgungs-Spannungsbereich	٧	43 bis 53
Länge der DC-Anschlussleitung, max.		
bei 3 x 1,5 mm ²	m	5
bei 3 x 2,5 mm²	m	20
Kontaktbelastung der Relais, max.		32 V; 0,5 A
Zulässige Umgebungstemperatur		
bei Betrieb	°С	+10 bis +40
bei Lagerung	°С	0 bis +60
Relative Luftfeuchtigkeit,		
nicht kondensierend	%	5 bis 85
Schutzart	IP	30
Überspannungskategorie		II
Verschmutzungsgrad		2

TURBOVAC MAG W 300/400 iP

TURBOVAC MAG W 300 iP mit integriertem Frequenzwandler und Sperrgasanschluss	KatNr.	
DN 100 ISO-K DN 100 CF	410300V0505 410300V0506	
TURBOVAC MAG W 400 iP mit integriertem Frequenzwandler und Sperrgasanschluss	KatNr.	
DN 160 ISO-K DN 160 CF	410400V0505 410400V0506	
Erforderliches Zubehör	KatNr.	
Netzgerät TURBO.POWER 501	410300V5221	II FLE
DC-Kabel Frequenzwandler - Netzgerät		
1 m	410300V2001	
3 m	410300V2003	
5 m	410300V2005	
10 m	410300V2010	
20 m	410300V2020	
Netzkabel, 3 m		
mit EURO-Stecker	800102V0002	
mit US-Stecker 5-15 P	800102V1002	
Vorvakuum-Pumpe		
TRIVAC D 2,5 E		
220-240 V, 50 Hz; 230 V, 60 Hz; Schuko-Stecker, Euro-Version	140 000	
110-120 V, 50/60 Hz; NEMA-Stecker, US-Version	140 002	
TRIVAC D 8 B		
1-Phasen-Motor; 230 V, 50/60 Hz	112 55	
3-Phasen-Motor; 230/400 V, 50 Hz; 250/440 V, 60 Hz	112 56	



TURBOVAC MAG W 300/400 iP


Optionales Zubehör	KatNr.
Splitterschutz	
DN 100 ISO-K	
grob (3,2 x 3,2 mm)	800132V0101
fein (1,6 x 1,6 mm)	800132V0102
DN 100 CF	
grob (3,2 x 3,2 mm)	200 91 514
fein (1,6 x 1,6 mm)	E 200 17 195
DN 160 ISO-K	E 200 00 307
DN 160 CF	E 200 17 247
Flansch-Heizung	
100 CF, 230 V, 50 Hz	854 27
100 CF, 115 V, 60 Hz	854 28
160 CF, 230 V, 50 Hz	854 37
160 CF, 115 V, 60 Hz	854 38
Wasser-Kühlung	410300V0101
Luft-Kühlung	410300V0102
START/STOP-Schalter für manuellen Betrieb der Turbomolekular-Pumpe	152 48
DC-Stecker	800 001 694
Elektromagnetisches Belüftungsventil, stromlos geschlossen	
24 V DC, DN 16 ISO-KF	800120V0011
Stromausfall-Fluter, stromlos offen	800120V0021
Lieferumfang Pumpe	
Flansche für Hochvakuum-Anschluss, Belüftung und Sperrgas sind blindgeflanscht	
Zentierring mit FPM-Dichtung und Spannring	

MAG INTEGRA - Magnetische Rotor-Lagerung mit integriertem Frequenzwandler, mit Compound-Stufe TURBOVAC MAG W 600/700 iP

Maßzeichnung für die TURBOVAC MAG W 600/700 iP

Saugvermögen für N₂ der TURBOVAC MAG W 600/700 iP in Abhängigkeit vom Einlass-Druck

Typische Anwendungen

- Gasanalysen-Systeme
- Teilchen-Beschleuniger
- Elektronen-Mikroskope
- Forschung
- Beschichtungs-Anlagen

Technische Merkmale

- Beliebige Einbaulage
- DN 160 oder 200 in ISO-K und/oder CF Hochvakuum-Anschluss
- DN 25 ISO-KF mit Klammerschuh-Vorvakuum-Anschluss
- Spülgas- / Belüftungs-Anschluss
 DN 16 ISO-KF mit Klammerschuh (Purge/Vent)
- Wasser- oder Luftkühlung optional
- Zwei Steckplätze für industrielle Kommunikationsmodule
 - Standard 9-Pin 24 V SPS (PLC)-IO im Control Slot
 - RS 232 C im Service Slot
 - weitere Schnittstellen möglich: ProfiBus, RS 485 C, DeviceNet, EtherNet IP, EtherCat

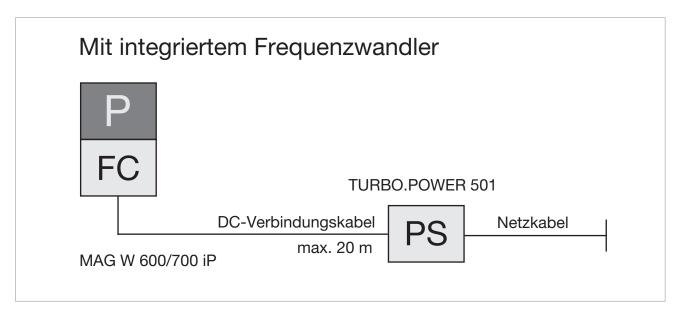
Vorteile für den Anwender

- Höchstes Saugvermögen bei kleinsten Konstruktionsmaßen
- Setzt neue Benchmarks bei wartungsfreien Systemen
- Eignung für schwingungsempfindliche Anwendungen der Analysentechnik, Dünnschichttechnik, Elektronenmikroskopen, Forschung, Entwicklung, u.a.
- Flexibilität durch das modulare Konzept; der Wandler ist wahlweise auch als Tischgerät erhältlich

TURBOVAC MAG

		W 600 iP W 70		W 70	0 iP
Hochvakuum-Anschluss	DN	160 ISO-K	160 CF	200 ISO-K	200 CF
Saugvermögen					
N_2	l/s	550	550	590	590
Ar	l/s	520	520	540	540
He	l/s	570	570	600	600
H ₂	l/s	410	410	430	430
Drehzahl	min ⁻¹		48 (000	
Kompression					
N_2			1,6 ·		
H_2			3,4		
He		1,7 · 10 ⁶			
Enddruck	mbar	< 10 ⁻⁸	< 10 ⁻¹⁰	< 10 ⁻⁸	< 10 ⁻¹⁰
Max. Ausheiztemperatur	°C	-	80	_	80
Max. Vorvakuum-Druck für N ₂	mbar	6			
Empfohlene Vorvakuumpumpe		TRIVAC D 2,5 E			
			TRIVAC	D8B	
Hochlaufzeit	min	< 6			
Vorvakuum-Anschluss (Klammerschuh)	DN	25 ISO-KF			
Sperrgas- / Belüftungs-Anschluss					
(Klammerschuh)	DN	16 ISO-KF			
Wasserkühlungs-Anschluss (Option)	G	1/8"			
Gewicht, ca.	kg	17			

Technische Daten


Integrierter Frequenzwandler

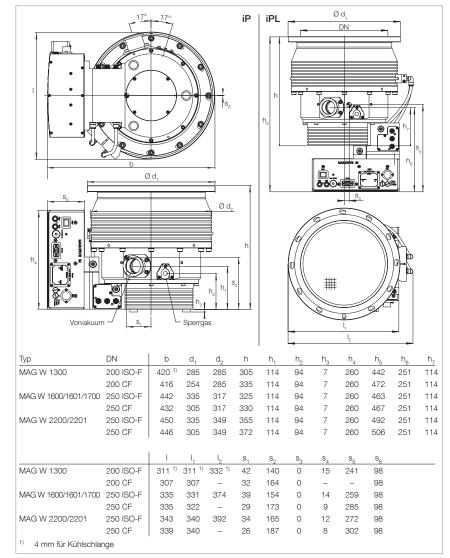
TURBO.DRIVE iS

_		
Spannungsversorgung	V	48
Restwelligkeit	%	< 2
Leistungsaufnahme		
Maximum	W	400
bei Enddruck	W	259
DC-Stromaufnahme, max.	Α	7,5 bis 9,3
DC-Versorgungs-Spannungsbereich	٧	43 bis 53
Länge der DC-Anschlussleitung, max.		
bei 3 x 1,5 mm ²	m	5
bei 3 x 2,5 mm²	m	20
Kontaktbelastung der Relais, max.		32 V; 0,5 A
Zulässige Umgebungstemperatur		
bei Betrieb	°C	+10 bis +40
bei Lagerung	°C	0 bis +60
Relative Luftfeuchtigkeit,		
nicht kondensierend	%	5 bis 85
Schutzart	IP	30
Überspannungskategorie		II
Verschmutzungsgrad		2

TURBOVAC MAG W 600/700 iP

TURBOVAC MAG W 600 iP mit integriertem Frequenzwandler und Sperrgasanschluss	KatNr.	
DN 100 ISO-K DN 100 CF	410600V0505 410600V0506	E
TURBOVAC MAG W 700 iP mit integriertem Frequenzwandler und Sperrgasanschluss	KatNr.	
DN 160 ISO-K DN 160 CF	410700V0505 410700V0506	
Erforderliches Zubehör	KatNr.	
Netzgerät TURBO.POWER 501	410300V5221	II. B.G
DC-Kabel Frequenzwandler – Netzgerät		
1 m	410300V2001	
3 m	410300V2003	
5 m	410300V2005	
10 m	410300V2010	
20 m	410300V2020	
Netzkabel, 3 m		
mit EURO-Stecker	800102V0002	
mit US-Stecker 5-15 P	800102V1002	
Vorvakuum-Pumpe		
TRIVAC D 2,5 E		
220-240 V, 50 Hz; 230 V, 60 Hz; Schuko-Stecker, Euro-Version	140 000	
110-120 V, 50/60 Hz; NEMA-Stecker, US-Version	140 002	
TRIVAC D 8 B		
1-Phasen-Motor; 230 V, 50/60 Hz	112 55	
3-Phasen-Motor; 230/400 V, 50 Hz; 250/440 V, 60 Hz	112 56	

TURBOVAC MAG W 600/700 iP


Optionales Zubehör	KatNr.
Splitterschutz	
DN 160 ISO-K	E 200 00 307
DN 160 CF	E 200 17 247
DN 200 ISO-K	200 91 639
DN 200 CF	400 001 515
Flansch-Heizung	
160 CF, 230 V, 50 Hz	854 37
160 CF, 115 V, 60 Hz	854 38
Wasser-Kühlung	410300V0101
Luft-Kühlung	410300V0102
START/STOP-Schalter für manuellen Betrieb der Turbomolekular-Pumpe	152 48
DC-Stecker	800 001 694
Elektromagnetisches Belüftungsventil, stromlos geschlossen	
24 V DC, DN 16 ISO-KF	800120V0011
Stromausfall-Fluter, stromlos offen	800120V0021
Lieferumfang Pumpe	
Flansche für Hochvakuum-Anschluss, Belüftung und Sperrgas sind blindgeflansch	t
Zentierring mit FPM-Dichtung und Spannring	

43

MAG INTEGRA - Magnetische Rotor-Lagerung mit integriertem Frequenzwandler, mit und ohne Compound-Stufe

TURBOVAC MAG W 1300 iP(L) bis 2201 iP(L)

Maßzeichnung für die MAGiNTEGRA

Typische Anwendungen

- PVD-Beschichtungsanlagen
- Architekturglasbeschichtung
- optische Beschichtung
- LC-Display
- Flat Panel
- Forschung
- Analyseanlagen

Technische Merkmale

- Beliebige Einbaulage
- DN 200 und/oder 250 in ISO-F und/ oder CF Hochvakuum-Anschluss
- DN 40 KF Vorvakuum-Anschluss
- Spülgas- / Belüftungs-Anschluss DN 16 KF mit Klammerschuh (Purge/Vent)
- Wasserkühlung
- Schutzart IP 54
- RS 232 C im Service Slot
- Ein Steckplatz f
 ür industrielle Kommunikationsmodule
 - Standard Profibus
 - weitere Schnittstellen möglich:
 RS 485 C, 9-Pin 24 V SPS,
 DeviceNet, EtherNet IP, EtherCat

Vorteile für den Anwender

Höchste Saugvermögen und Gasdurchsätze bei kleinsten Konstruktionsmaßen

- Robuster und zuverlässiger Betrieb in industriellen Anwendungen
- Setzt neue Benchmarks bei wartungsfreien Systemen
- Eignung für schwingungsempfindliche Anwendungen der Analysentechnik, Dünnschichttechnik, Elektronenmikroskopen, Forschung, Entwicklung, u.a.
- Flexibilität durch das modulare Konzept; der Wandler ist wahlweise seitlich oder unter der Pumpe angebracht

TURBOVAC MAG W

1300 iP(L) 1600 iP(L) 1601 iP(L) 1700 iP(L) 2200 iP(L) 2201 iP(L)

						,
		Booster	Booster			
Hochvakuum-Anschluss D	200 ISO-F 200 CF	250 ISO-F	250 ISO-F	250 ISO-F 250 CF	250 ISO-F 250 CF	250 ISO-F
Ar I He I H ₂ I	/s 1100 /s 1050 /s 1220 /s 1130	1600 1470 1770 1570	1600 1470 1770 1570	1610 1480 1710 1500	2100 1900 2050 1750	2100 1900 2050 1750
Nenn-Drehzahl Standby-Drehzahl einstellbar von mir bis Nenn-Drehzahl mir		33 000 13 800 (230 Hz)	33 000 13 800 (230 Hz)	33 000 13 800 (230 Hz)	30 600 13 800 (230 Hz)	30 000 13 800 (230 Hz)
$\begin{array}{ll} \text{Max. Kompression} \\ \text{N}_2 \\ \text{Ar} \\ \text{He bei 1 sccm} \\ \text{H}_2 \\ \text{bei 1 sccm} \end{array}$	$> 10^8$ > 10^8 $2 \cdot 10^5$ $8 \cdot 10^3$	> 10 ⁷ > 10 ⁷ 6 · 10 ⁴ 1 · 10 ³	$> 10^7$ $> 10^7$ $3 \cdot 10^3$ $5 \cdot 10^2$	> 10 ⁸ > 10 ⁸ 2 · 10 ⁵ 4 · 10 ³	> 10 ⁸ > 10 ⁸ 5 · 10 ⁴ 5 · 10 ³	> 10 ⁸ > 10 ⁸ 5 · 10 ³ 5 · 10 ²
		60 30	60 40	30 20	30 17	50 36
mbar · I Ar im Dauerbetrieb mbar · I		30 20	30 25	20 15	20 12	30 24
Enddruck ISO-F-Flansch mb CF-Flansch mb		< 10 ⁻⁸	< 10 ⁻⁸	< 10 ⁻⁸ < 10 ⁻¹⁰	< 10 ⁻⁸ < 10 ⁻¹⁰	< 10 ⁻⁸
Max. Ausheiztemperatur	°C		8	30		
$\begin{array}{ccc} \text{Max. Vorvakuum-Druck} & & & \text{mb} \\ \text{N}_2 & & \text{mb} \\ \text{Ar} & & \text{mb} \end{array}$		1,0 1,0	1,0 1,0	4,0 0,6	2,5 2,5	1,2 1,2
Empfohlene Vorvakuumpumpe		TRIVAC	B oder trocke	nverdichtende l	Pumpen	
Hochlaufzeit m	in < 5	< 7	< 7	< 7	< 10	< 10
Vorvakuum-Anschluss D	N	40 KF				
Sperrgas- / Belüftungs-Anschluss (Klammerschuh)	N	16 KF				
Wasserkühlungs-Anschluss	G	1/8"				
Gewicht, ca.	kg 40	45	45	45	50	50
Schallpegel gemäß ISO 3744 dB(A)	< 41				
Vibration am Hochvakuum-Flansch bei max. Drehzahl µ	m		0,	01		

Technische Daten

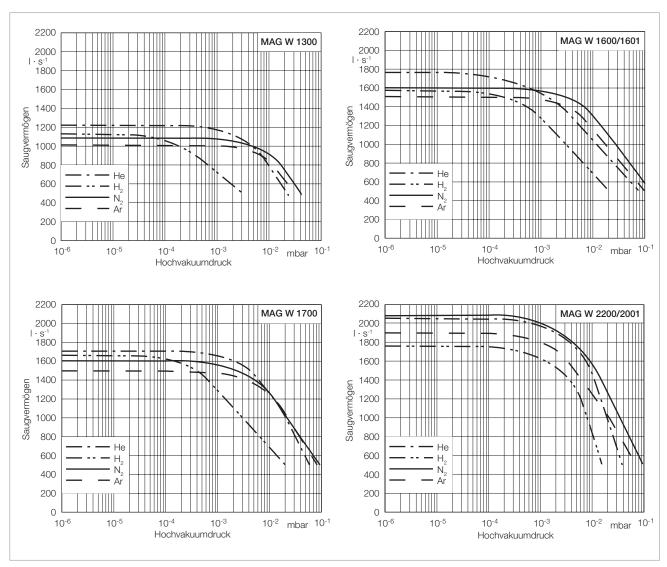
Integrierter Frequenzwandler

MAG.DRIVE iM

	MAGIETH I
V	200 - 240 ±10%
Hz	50 / 60
W	750
W	150
	32 V; 0,5 A
°C	+10 bis +45
°C	-10 bis +60
%	5 bis 85
IP	54
	II
	2
	Hz W W

TURBOVAC MAG W1300/1600/1601/ 1700/2200/2201 iP(L)

TURBOVAC MAG W 1300 mit integriertem Frequenzwandler und Sperrgasanschluss	KatNr.
MAG W 1300 iP, DN 200 ISO-F, Profibus MAG W 1300 iP, DN 200 ISO-F, 24 V SPS-Schnittstelle MAG W 1300 iP, DN 200 CF, Profibus MAG W 1300 iP, DN 200 CF, 24 V SPS-Schnittstelle MAG W 1300 iPL, DN 200 ISO-F, Profibus MAG W 1300 iPL, DN 200 ISO-F, 24 V SPS-Schnittstelle MAG W 1300 iPL, DN 200 CF, Profibus MAG W 1300 iPL, DN 200 CF, Profibus MAG W 1300 iPL, DN 200 CF, 24 V SPS-Schnittstelle	411300V0504 411300V0514 411300V0506 411300V0704 411300V0714 411300V0706 411300V0716
TURBOVAC MAG W 1600 Booster mit integriertem Frequenzwandler und Sperrgasanschluss	KatNr.
MAG W 1600 iP Booster, DN 250 ISO-F, Profibus MAG W 1600 iP Booster, DN 250 ISO-F, 24 V SPS-Schnittstelle MAG W 1600 iPL Booster, DN 250 ISO-F, Profibus MAG W 1600 iPL Booster, DN 250 ISO-F, 24 V SPS-Schnittstelle	411600V0504 411600V0514 411600V0704 411600V0714
TURBOVAC MAG 1601 Booster PFC PS mit integriertem Frequenzwandler und Sperrgasanschluss	KatNr.
MAG 1601 iP Booster, DN 250 ISO-F, Profibus MAG 1601 iP Booster, DN 250 ISO-F, 24 V SPS-Schnittstelle MAG 1601 iPL Booster, DN 250 ISO-F, Profibus MAG 1601 iPL Booster, DN 250 ISO-F, 24 V SPS-Schnittstelle	411600V2504 411600V2514 411600V2704 411600V2714
TURBOVAC MAG W 1700 mit integriertem Frequenzwandler und Sperrgasanschluss	KatNr.
MAG W 1700 iP, DN 250 ISO-F, Profibus MAG W 1700 iP, DN 250 ISO-F, 24 V SPS-Schnittstelle MAG W 1700 iP, DN 250 CF, Profibus MAG W 1700 iP, DN 250 CF, 24 V SPS-Schnittstelle MAG W 1700 iPL, DN 250 ISO-F, Profibus MAG W 1700 iPL, DN 250 ISO-F, 24 V SPS-Schnittstelle MAG W 1700 iPL, DN 250 CF, 24 V SPS-Schnittstelle MAG W 1700 iPL, DN 250 CF, 24 V SPS-Schnittstelle MAG W 1700 iPL, DN 250 CF, 24 V SPS-Schnittstelle	411700V0504 411700V0514 411700V0506 411700V0516 411700V0704 411700V0714 411700V0716
TURBOVAC MAG W 2200 mit integriertem Frequenzwandler und Sperrgasanschluss	KatNr.
MAG W 2200 iP, DN 250 ISO-F, Profibus MAG W 2200 iP, DN 250 ISO-F, 24 V SPS-Schnittstelle MAG W 2200 iP, DN 250 CF, Profibus MAG W 2200 iP, DN 250 CF, 24 V SPS-Schnittstelle MAG W 2200 iPL, DN 250 ISO-F, Profibus MAG W 2200 iPL, DN 250 ISO-F, 24 V SPS-Schnittstelle MAG W 2200 iPL, DN 250 CF, Profibus MAG W 2200 iPL, DN 250 CF, Profibus MAG W 2200 iPL, DN 250 CF, Profibus	412200V0504 412200V0514 412200V0506 412200V0516 412200V0704 412200V0714 412200V0716
TURBOVAC MAG 2201 Booster PFC PS mit integriertem Frequenzwandler und Sperrgasanschluss	KatNr.
MAG 2201 iP, DN 250 ISO-F, Profibus MAG 2201 iP, DN 250 ISO-F, 24 V SPS-Schnittstelle MAG 2201 iPL, DN 250 ISO-F, Profibus MAG 2201 iPL, DN 250 ISO-F, 24 V SPS-Schnittstelle	412200V2504 412200V2514 412200V2704 412200V2714

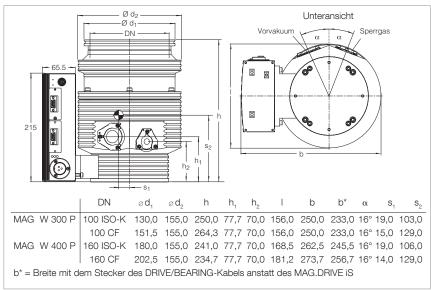

Andere Schnittstellen auf Anfrage

Mit integriertem Frequenzwandler und Netzteil P FC PS MAG W 1300 iP(L), MAG W 1600/1601 iP(L) Booster, MAG W 1700 iP(L), MAG W 2200/2201 iP(L)

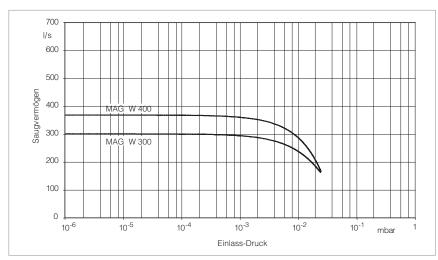
Bestelldaten

TURBOVAC MAG W1300/1600/1601/ 1700/2200/2201 iP(L)

Optionales Zubehör	KatNr.
Satz Schrauben, Scheiben und Muttern für ISO-F-Flansch (je 12) Schrauben M 10 x 50 Schrauben M 10 x 35	400153V0012 400153V0010
Zentrierring mit O-Ring Al/FPM DN 200 DN 250 Edelstahl/FPM DN 200 DN 250	268 44 268 45 887 02 887 08
Satz Schrauben, Scheiben und Muttern für CF-Flansch (je 8) Schrauben M 8 x 40 (für DN 200 werden 3 Sätze benötigt, für DN 250 4 Sätze)	400153V0016
Kupferdichtringe für CF-Flansch DN 200 (Satz à 10 Stück) DN 250 (Satz à 5 Stück)	839 47 839 48
Sechskant-Schraubensatz mit Muttern, Schrauben und Unterlegscheiben für CF-Flansch DN 200 DN 250 (2 Sätze erforderlich)	839 07 839 07
Auf Anfrage	
Netzkabel, 2,5 m mit EURO-Stecker mit US-Stecker	411310V03 411320V03
Verpackungs-Set DN 250 Metall	200 07 901
Verpackungs-Set Metall für andere Flansche	Auf Anfrage
Sperrgas- und Belüftungsventil 24 V DC 0,6 mbar·l/s bei 1,5 bis 6 bar 0,6 mbar·l/s bei 1 bis 1,5 bar Kabelsatz (2 Stück) zum Anschluss an die Pumpe	121 33 800152V0010 411300V01
Kühlwasserventil-Kit	411300V02
Ersatzteile Splitterschutz DN 200 ISO-F und DN 200 CF DN 250 ISO-F und DN 250 CF	E 200 04 558 E 200 04 557
Lieferumfang Pumpe	
Flansche für Hochvakuum-Anschluss, Belüftung und Sperrgas sind blindgeflanscht	
Wandlerseitige Netzstecker (IP 54)	
Splitterschutz	



Saugvermögenskurven der MAG $\,$ W 1300, W 1600/1601, W 1700 und W 2200/2001


Notizen Communication of the C	

MAG INTEGRA - Magnetische Rotor-Lagerung mit separatem Frequenzwandler, mit Compound-Stufe TURBOVAC MAG W 300/400 P

Maßzeichnung für die TURBOVAC MAG W 300/400 P

Saugvermögen für N₂ der TURBOVAC MAG W 300/400 P in Abhängigkeit vom Einlass-Druck

Typische Anwendungen

- Gasanalysen-Systeme
- Teilchen-Beschleuniger
- Elektronen-Mikroskope
- Forschung
- Beschichtungs-Anlagen

Technische Merkmale

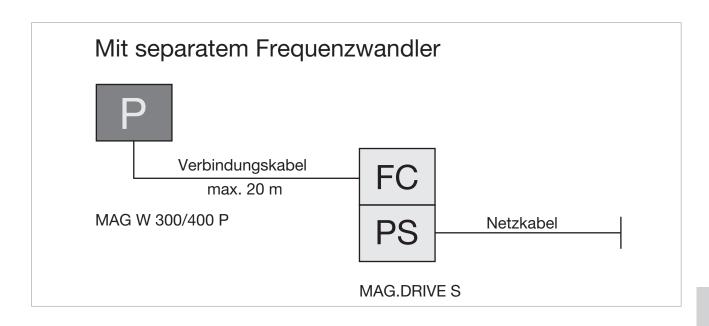
- Beliebige Einbaulage
- DN 100 oder 160 in ISO-K und/oder CF Hochvakuum-Anschluss
- DN 16 ISO-KF mit Klammerschuh-Vorvakuum-Anschluss
- Spülgas- / Belüftungs-Anschluss
 DN 16 ISO-KF mit Klammerschuh (Purge/Vent)
- Wasser- oder Luftkühlung optional

Vorteile für den Anwender

- Höchstes Saugvermögen bei kleinsten Konstruktionsmaßen
- Setzt neue Benchmarks bei wartungsfreien Systemen
- Eignung für schwingungsempfindliche Anwendungen der Analysentechnik, Dünnschichttechnik, Elektronenmikroskopen, Forschung, Entwicklung, u.a.
- Flexibilität durch das modulare Konzept; die Pumpe ist wahlweise auch mit integriertem Frequenzwandler erhältlich

TURBOVAC MAG

		W 300 P W 400 P			00 P
Hochvakuum-Anschluss	DN	100 ISO-K	100 CF	160 ISO-K	160 CF
Saugvermögen					
N_2	l/s	300	300	365	365
Ar	l/s	260	260	330	330
He	l/s	260	260	280	280
H_2	l/s	190	190	200	200
Drehzahl	min ⁻¹		58	800	
Kompression					
$N_{\scriptscriptstyle 2}$				1010	
H_2			,	· 10³	
He			9,2	· 10 ⁴	
Enddruck	mbar	< 10 ⁻⁸	< 10 ⁻¹⁰	< 10 ⁻⁸	< 10 ⁻¹⁰
Max. Ausheiztemperatur	°C	-	80	-	80
Max. Vorvakuum-Druck für ${\rm N_2}$	mbar	8			
Empfohlene Vorvakuumpumpe		TRIVAC D 2,5 E			
			TRIVAC	D8B	
Hochlaufzeit	min	< 5			
Vorvakuum-Anschluss (Klammerschuh)	DN	16 ISO-KF			
Sperrgas- / Belüftungs-Anschluss					
(Klammerschuh)	DN	16 ISO-KF			
Wasserkühlungs-Anschluss (Option)	G	1/8"			
Gewicht, ca.	kg	12			

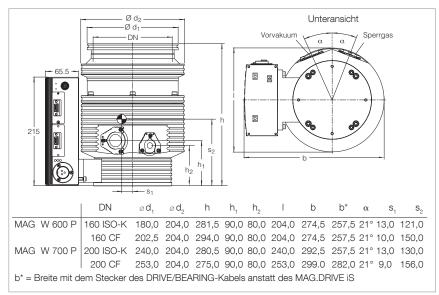

Technische Daten

MAG.DRIVE S

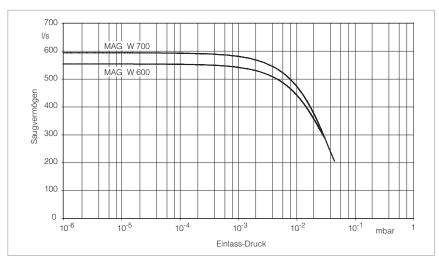
Spannungsversorgung	V	100 – 240, ±10 %
Netzfrequenz	Hz	50 / 60
Leistungsaufnahme		
Maximum	W	100
bei Enddruck	W	400
Max. Motorspannung	V	48
Max. Pumpenstrom	Α	6
Sicherungen F1, F2 5 x 20 mm		flink 10 A
		hohes Schaltvermögen 250 V
Anlagenseitige Vorsicherung		B- oder C-Charakteristik
Max. Frequenz	Hz	0 bis 2000
Belastbarkeit Relaisausgänge X1	V/A	32 / 0,5
Temperatur		
bei Betrieb	°C	0 bis +45
bei Lagerung	°C	-10 bis +60
Relative Luftfeuchtigkeit	%	95 (nicht kondensierend)

TURBOVAC MAG W 300/400 P

TURBOVAC MAG W 300 P mit separatem Frequenzwandler und Compound-Stufe	Р	KatNr.	
DN 100 ISO-K DN 100 CF		410300V0005 410300V0006	
TURBOVAC MAG W 400 P mit separatem Frequenzwandler und Compound-Stufe	Р	KatNr.	
DN 160 ISO-K DN 160 CF		410400V0005 410400V0006	
Erforderliches Zubehör	PFC	KatNr.	
Elektronischer Frequenzwandler MAG.DRIVE S mit Display		410300V0212	÷
Verbindungskabel DRIVE/BEARING (Verbindung zwischen Pumpe und MAG.DRIVE S) 3 m 5 m 10 m 20 m		410300V4003 410300V4005 410300V4010 410300V4020	
Netzkabel, 3 m mit EURO-Stecker mit US-Stecker 5-15 P		800102V0002 800102V1002	
Netzkabel, 2 m mit US-Stecker 115 V AC		992 76 513	
Vorvakuum-Pumpe TRIVAC D 2,5 E 220–240 V, 50 Hz; 230 V, 60 Hz; Schuko-Stecker, Euro-Version 110–120 V, 50/60 Hz; NEMA-Stecker, US-Version		140 000 140 002	
TRIVAC D 8 B 1-Phasen-Motor; 230 V, 50/60 Hz 3-Phasen-Motor; 230/400 V, 50 Hz; 250/440 V, 60 Hz		112 55 112 56	



TURBOVAC MAG W 300/400 P


Optionales Zubehör	KatNr.
Splitterschutz	
DN 100 ISO-K	
grob (3,2 x 3,2 mm)	800132V0101
fein (1,6 x 1,6 mm)	800132V0102
DN 100 CF	
grob (3,2 x 3,2 mm)	200 91 514
fein (1,6 x 1,6 mm)	E 200 17 195
DN 160 ISO-K	E 200 00 307
DN 160 CF	E 200 17 247
Flansch-Heizung	
100 CF, 230 V, 50 Hz	854 27
100 CF, 115 V, 60 Hz	854 28
160 CF, 230 V, 50 Hz	854 37
160 CF, 115 V, 60 Hz	854 38
Wasser-Kühlung	410300V0101
Luft-Kühlung	410300V0102
Elektromagnetisches Belüftungsventil, stromlos geschlossen	
24 V DC, DN 16 ISO-KF	800120V0011
Stromausfall-Fluter, stromlos offen	800120V0021
Lieferumfang Pumpe	
Flansche für Hochvakuum-Anschluss, Belüftung und Sperrgas sind blindgeflanscht	
Zentierring mit FPM-Dichtung und Spannring	

MAG INTEGRA - Magnetische Rotor-Lagerung mit separatem Frequenzwandler, mit Compound-Stufe TURBOVAC MAG W 600/700 P

Maßzeichnung für die TURBOVAC MAG W 600/700 P

Saugvermögen für $\mathrm{N_2}$ der TURBOVAC MAG 600/700 P in Abhängigkeit vom Einlass-Druck

Typische Anwendungen

- Gasanalysen-Systeme
- Teilchen-Beschleuniger
- Elektronen-Mikroskope
- Forschung
- Beschichtungs-Anlagen

Technische Merkmale

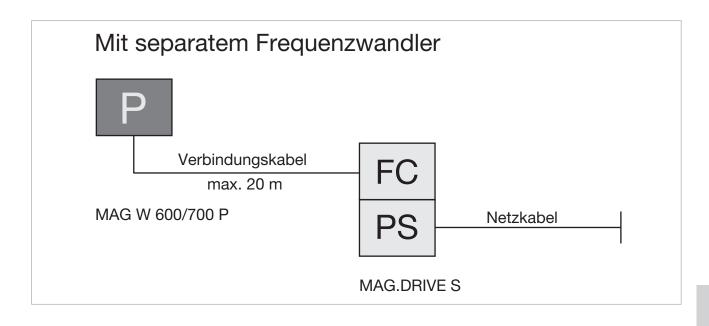
- Beliebige Einbaulage
- DN 160 oder 200 in ISO-K und/oder CF Hochvakuum-Anschluss
- DN 25 ISO-KF mit Klammerschuh-Vorvakuum-Anschluss
- Spülgas- / Belüftungs-Anschluss
 DN 16 ISO-KF mit Klammerschuh (Purge/Vent)
- Wasser- oder Luftkühlung optional

Vorteile für den Anwender

- Höchstes Saugvermögen bei kleinsten Konstruktionsmaßen
- Setzt neue Benchmarks bei wartungsfreien Systemen
- Eignung für schwingungsempfindliche Anwendungen der Analysentechnik, Dünnschichttechnik, Elektronenmikroskopen, Forschung, Entwicklung, u.a.
- Flexibilität durch das modulare Kon zept; die Pumpe ist wahlweise auch mit integriertem Frequenzwandler erhältlich

TURBOVAC MAG

		W 6	00 P	P W 700 F	
Hochvakuum-Anschluss	DN	160 ISO-K	160 CF	200 ISO-K	200 CF
Saugvermögen					
N_2	l/s	550	550	590	590
Ar	l/s	520	520	540	540
He	l/s	570	570	600	600
H ₂	l/s	410	410	430	430
Drehzahl	min ⁻¹		48 (000	
Kompression					
N_2			1,6 ·		
H_2			3,4		
He			1,7	· 10 ⁶	
Enddruck	mbar	< 10 ⁻⁸	< 10 ⁻¹⁰	< 10 ⁻⁸	< 10 ⁻¹⁰
Max. Ausheiztemperatur	°C	-	80	-	80
Max. Vorvakuum-Druck für N ₂	mbar	6			
Empfohlene Vorvakuumpumpe		TRIVAC D 2,5 E			
			TRIVAC	D8B	
Hochlaufzeit	min	< 6			
Vorvakuum-Anschluss (Klammerschuh)	DN	25 ISO-KF			
Sperrgas- / Belüftungs-Anschluss					
(Klammerschuh)	DN	16 ISO-KF			
Wasserkühlungs-Anschluss (Option)	G	1/8"			
Gewicht, ca.	kg	17			


Technische Daten

MAG.DRIVE S

Spannungsversorgung	V	100 – 240, ±10 %
Netzfrequenz	Hz	50 / 60
Leistungsaufnahme		
Maximum	W	100
bei Enddruck	W	400
Max. Motorspannung	V	48
Max. Pumpenstrom	Α	6
Sicherungen F1, F2 5 x 20 mm		flink 10 A
		hohes Schaltvermögen 250 V
Anlagenseitige Vorsicherung		B- oder C-Charakteristik
Max. Frequenz	Hz	0 bis 2000
Belastbarkeit Relaisausgänge X1	V/A	32 / 0,5
Temperatur		
bei Betrieb	°C	0 bis +45
bei Lagerung	°C	-10 bis +60
Relative Luftfeuchtigkeit	%	95 (nicht kondensierend)

TURBOVAC MAG W 600/700 P

TURBOVAC MAG W 600 P mit separatem Frequenzwandler und Compound-Stufe	Р	KatNr.	
DN 160 ISO-K DN 160 CF		410600V0005 410600V0006	
TURBOVAC MAG W 700 P mit separatem Frequenzwandler und Compound-Stufe	Р	KatNr.	6
DN 200 ISO-K DN 200 CF		410700V0005 410700V0006	
Erforderliches Zubehör	PFC	KatNr.	
Elektronischer Frequenzwandler MAG.DRIVE S mit Display		410300V0212	÷
Verbindungskabel DRIVE/BEARING			
(Verbindung zwischen Pumpe und MAG.DRIVE S) 3 m 5 m 10 m 20 m		410300V4003 410300V4005 410300V4010 410300V4020	
Netzkabel, 3 m mit EURO-Stecker mit US-Stecker 5-15 P		800102V0002 800102V1002	
Netzkabel, 2 m mit US-Stecker 115 V AC		992 76 513	
Vorvakuum-Pumpe TRIVAC D 2,5 E 220–240 V, 50 Hz; 230 V, 60 Hz; Schuko-Stecker, Euro-Version 110–120 V, 50/60 Hz; NEMA-Stecker, US-Version		140 000 140 002	
TRIVAC D 8 B 1-Phasen-Motor; 230 V, 50/60 Hz 3-Phasen-Motor; 230/400 V, 50 Hz; 250/440 V, 60 Hz		112 55 112 56	

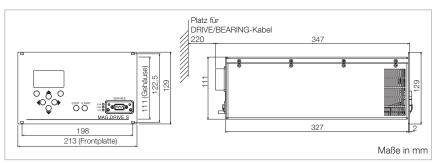
TURBOVAC MAG W 600/700 P

Optionales Zubehör	KatNr.
Splitterschutz	
DN 160 ISO-K	E 200 00 307
DN 160 CF	E 200 17 247
DN 200 ISO-K	200 91 639
DN 200 CF	400 001 515
Flansch-Heizung	
160 CF, 230 V, 50 Hz	854 37
160 CF, 115 V, 60 Hz	854 38
Wasser-Kühlung	410300V0101
Luft-Kühlung	410300V0102
Elektromagnetisches Belüftungsventil, stromlos geschlossen	
24 V DC, DN 16 ISO-KF	800120V0011
Stromausfall-Fluter, stromlos offen	800120V0021
Lieferumfang Pumpe	
Flansche für Hochvakuum-Anschluss, Belüftung und Sperrgas sind blindgeflanscht	
Zentierring mit FPM-Dichtung und Spannring	

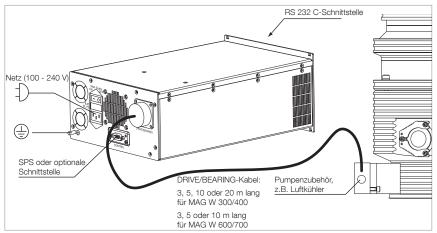
Zubehör

Elektronische Frequenzwandler für Pumpen mit magnetischer Rotor-Lagerung MAG.DRIVE S

MAG.DRIVE S mit Display


Vorteile für den Anwender

- Betrieb der Turbomolekular-Vakuumpumpen mit magnetischer Rotor-Lagerung:
 MAG W 300/400 P und
 - MAG W 600/700 P
 Einfache Bedienung durch die


Bedienelemente

- Kommunikation mit dem übergeordneten Steuerungssystem des Betreibers über serielle oder konventionelle Schnittstellen
- Einstellen der Drehzahl und anderer Funktionen
- Anzeige von Warnungen und Fehlern
- Speicherung von pumpenspezifischen Parametern
- Kleine Abmaße und geringes Gewicht
- Integrierter Lüfter

- Zwei Steckplätze für industrielle Kommunikationsmodule
 - rückseitig: Standard 9-Pin 24 V SPS (PLC)-IO im Control Slot
 - vorderseitig:RS 232 C im Service Slot
 - weitere Schnittstellen möglich: Ethernet, Profibus, DeviceNet, RS 485 C

Maßzeichnung des MAG.DRIVE S

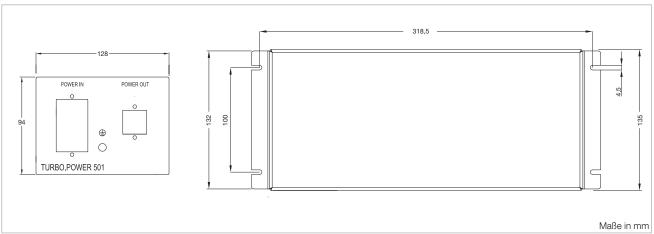
Anschlussschema für MAG.DRIVE S

MAG.DRIVE S

Spannungsversorgung	V	100 – 240, ±10 %
Netzfrequenz	Hz	50 / 60
Leistungsaufnahme		
Maximum	W	100
bei Enddruck	W	400
Max. Motorspannung	V	48
Max. Pumpenstrom	Α	6
Sicherungen F1, F2 5 x 20 mm		flink 10 A
		hohes Schaltvermögen 250 V
Anlagenseitige Vorsicherung		B- oder C-Charakteristik
Max. Frequenz	Hz	0 bis 2000
Belastbarkeit Relaisausgänge X1	V/A	32 / 0,5
Temperatur		
bei Betrieb	°C	0 bis +45
bei Lagerung	°C	-10 bis +60
Relative Luftfeuchtigkeit	%	95 (nicht kondensierend)
Gewicht, ca.	kg	6,5

Bestelldaten MAG.DRIVE S

	KatNr.
Elektronischer Frequenzwandler	
MAG.DRIVE S mit Display	410300V0212
Verbindungskabel DRIVE/BEARING	
(Verbindung zwischen Pumpe	
und MAG.DRIVE S)	
3,0 m	410300V4003
5,0 m	410300V4005
10,0 m ¹⁾	410300V4010
20,0 m ¹⁾	410300V4020
Netz-Kabel	
3 m	
mit EURO-Stecker	800102V0002
mit US-Stecker 5-15 P	800102V1002
2 m	
mit US-Stecker 115 V AC	992 76 513


 $^{^{\}mbox{\tiny 1)}}$ Nur für den Betrieb der MAG $\,$ W 300/400 geeignet

Netzgerät TURBO.POWER 501

für TURBOVAC MAG W 300/400/600/700 iP

TURBO.POWER 501 (Abb. ähnlich)

Maßzeichnung zum Netzgerät TURBO.POWER 501

Technische Merkmale

- Versorgung der MAG W 300/400/600/700 iP mit 48 V DC
- Tischgerät oder einbaufähig in Schaltschrank

Netzgerät

TURBO.POWER 501

		TONBO: FOWER 301
Spannungsversorgung (POWER IN)	V	100 – 240, ±10 %
Nennfrequenz	Hz	50 / 60
Leistungsaufnahme		
Maximum	VA	650
bei Enddruck der Pumpe	VA	450
DC-Versorgungsspannung		
POWER OUT	V DC	48
max	Α	10
Länge der DC-Anschlussleitung, max.		
bei 3 x 1,5 mm²	m	5
bei 3 x 2,5 mm ²	m	20
Zulässige Umgebungstemperatur		
bei Betrieb	°C	+10 bis +40
bei Lagerung	°C	-10 bis -70
Relative Luftfeuchtigkeit,		
nicht kondensierend	%	5 bis 85
Schutzart	IP	30
Überspannungskategorie		II
Verschmutzungsgrad		2
Gewicht, ca.	kg	4

Bestelldaten

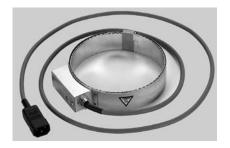
Netzgerät

TURBO.POWER 501

	KatNr.
Netzgerät TURBO.POWER 501	410300V5221
DC-Kabel (Verbindung zwischen	
TURBO.POWER 501 und MAG.DRIVE iS)	
1 m	410300V2001
3 m	410300V2003
5 m	410300V2005
10 m	410300V2010
20 m	410300V2020
Netz-Kabel	
3 m	
mit EURO-Stecker	800102V0002
mit US-Stecker 5-15 P	800102V1002
2 m	
mit US-Stecker 115 V AC	992 76 513

Schwingungsdämpfer

Schwingungsdämpfer werden zur Schwingungs-Entkopplung von Turbomolekular-Vakuumpumpen und hochempfindlichen Geräten wie Elektronen-Mikroskopen, Mikrowaagen oder Analyse-Gerätenein gesetzt.


Bestelldaten

Schwingungsdämpfer

		KatNr.
Schwingungsdämpf	er	
DN 63 ISO-K	66 mm lang	800131V0063
DN 63 CF	81 mm lang	500 070
DN 100 ISO-K	84 mm lang	800131V0100
DN 100 CF	100 mm lang	500 071
DN 160 ISO-K	84 mm lang	500 073
DN 160 CF	104 mm lang	500 072

Heizmanschette für CF-Hochvakuum-Flansche

Zur Verbesserung des Enddruckes im Ultra-Hochvakuum-Bereich können die meisten TURBOVAC-Pumpen ausgeheizt werden. Ein Ausheizen der Turbomolekular-Pumpe ist nur dann sinnvoll, wenn auch gleichzeitig der Vakuum-Behälter beheizt wird.

Technische Daten

Heizmanschette

Anschluss-Leistung der Flansch-Heiz	ung	
DN 63 CF, DN 100 CF	W	100
DN 160 CF	w	150
Spannung	V AC	230 oder 115
Kabellänge	mm	1600
Max. Temperatur	°C	100

Bestelldaten

Heizmanschette

	KatNr.	KatNr.
Heizmanschette	230 V	115 V
DN 63 CF	800137V0003	800137V0004
DN 100 CF	800137V0005	800137V0006
DN 160 CF	800137V0007	800137V0008

Feinfilter

Ein im Zentrierring integrierter Feinfilter schützt die Pumpe vor Partikeln und Staub auf der Hochvakuum-Seite.

Bestelldaten

Feinfilter

	KatNr.
Anschluss-Flansch des Feinfilters	
DN 40 ISO-KF	883 98
DN 63 ISO-K	887 20
DN 100 ISO-K	887 21

Elektromagnetisches Belüftungs-Ventil

Technische Daten

Belüftungs-Ventil

Antriebs-Spannung	V DC	24
Leistungs-Aufnahme	w	4
Anschluss-Flansch	DN	16 ISO-KF
Gewicht, ca.	kg	0,3

Bestelldaten

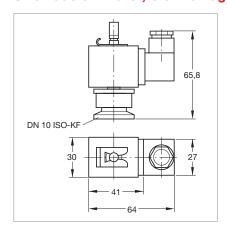
Belüftungs-Ventil

	KatNr.
Elektromagnetisches Belüftungs-Ventil,	
stromlos geschlossen	800120V0011

Stromausfall-Fluter

Technische Daten

Stromausfall-Fluter


Antriebs-Spannung	V DC	24
Leistungs-Aufnahme	W	4
Anschluss-Flansch	DN	16 ISO-KF
Gewicht, ca.	kg	0,3

Bestelldaten

Stromausfall-Fluter

	KatNr.
Stromausfall-Fluter, stromlos offen	800120V0021

Stromausfall-Fluter, elektromagnetischer Antrieb

Technische Daten

Stromausfall-Fluter

Technische Daten	Siehe Katalog-Teil "Ventile",
	Abschnitt "Spezial-Ventile"

Bestelldaten

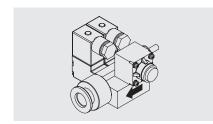
Stromausfall-Fluter

	KatNr.
Stromausfall-Fluter DN 10 ISO-KF,	
elektromagnetischer Antrieb	
24 V DC	174 46
230 V AC / 50/60 Hz	174 26

Sperrgas- und Belüftungs-Ventil

Technische Daten

Sperrgas und Belüftungs-Ventil


Anschluss-Flansch	DN	10 ISO-KF
Gewicht, ca.	kg	0,7

Bestelldaten

Sperrgas und Belüftungs-Ventil

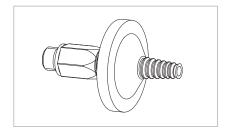
		KatNr.
Sperrgas- und Belüt	ftungs-Ventil, 230 V	
0,2	mbar · l/s	855 19
0,4	mbar · l/s	855 29

Sperrgas- und Belüftungs-Ventil

Technische Daten

Sperrgas und Belüftungs-Ventil

Anschluss-Flansch	DN	
Einlass		Rohr 1/4"
Auslass		pumpenspezifisch oder DN 16 ISO-KF
Sperrgas-Druck, abs.	bar	1,5 – 6,0
Gewicht, ca.	kg	0,5


Bestelldaten

Sperrgas und Belüftungs-Ventil

	KatNr.
Sperrgas- und Belüftungs-Ventil	
24 V DC; 0,6 mbar · l/s	121 33

Weitere 0,6 mbar \cdot l/s Ventile auf Anfrage

Gasfilter auf G 1/4" für Sperrgas- und Belüftungs-Ventil

Technische Daten

Gasfilter

Bestelldaten

Gasfilter

	KatNr.
Gasfilter auf G 1/4"	
für Sperrgas- und Belüftungs-Ventil	800110V0012
Ersatzfilter für Gasfilter auf G 1/4"	
für Sperrgas- und Belüftungs-Ventil	E 200 18 515

Zubehör für serielle Schnittstellen RS 232 C und RS 485 C

Das Zubehör eröffnet zahlreiche Steuer-, Kontroll- und Informations-Möglichkeiten für Elektronische Frequenzwandler und Turbomolekular-Vakuumpumpen. Allee Turbomolekular-Vakuumpumpen bzw. Elektronische Frequenzwandler werden unterstüzt.

PC-Software LEYASSIST

Software für die Kommunikation, Steuerung und Überwachung von Turbomolekularpumpen über den PC via USB, RS 485 oder RS 232 Schnittstelle mit automatischer Pumpenerkennung.

Funktionen

- Anzeige Status des Vakuumsystems
- Konfiguration Zubehörfunktionen der TURBOVAC i / iX
- Parameter auslesen/schreiben
- Datalogging
- Alarm/Warnmeldungs-Logging

Bestelldaten

PC-Software LEYASSIST

	KatNr.
PC-Software LEYASSIST	230439V01

Schnittstellenadapter für Frequenzwandler mit RS 232 C / RS 485 C-Schnittstelle

Bestelldaten

Schnittstellenadapter RS 232 C/RS 485 C

	KatNr.
Adapter RS 232 C/RS 485 C Netz-Anschluss 230 V, 50 Hz, EURO-Stecker	800110V0101
Adapter USB/RS 232 C zum Anschluss des RS 232 C an USB (PC), inkl. CD mit Treibern und Handbuch	800110V0103

Sonstiges

Service-Dienstleistungen für mechanisch gelagerte Turbomolekular-Vakuumpumpen

Komplett-Überholung im Servicecenter

Die Komplett-Überholung im Servicecenter beinhaltet:

komplette Demontage, Reinigung, Austausch aller Verschleißteile, Montage, elektrische Sicherheitsprüfung, Endprüfung inklusive Vibrationsmessung

Komplett-Überholung mit Dekontamination im Servicecenter

Die Komplett-Überholung mit Dekontamination im Servicecenter beinhaltet:

komplette Demontage, Reinigung und Dekontamination, Austausch aller Verschleißteile, Montage, elektrische Sicherheitsprüfung, Endprüfung inklusive Vibrationsmessung

Bestelldaten	Komplett-Uberholung im Servicecenter	Komplett-Uberholung mit Dekontamination im Servicecenter					
	KatNr.	KatNr.					
Für Pumpe							
TURBOVAC 35 / 50D	AS 2165	AS 2165 D					
TURBOVAC 50	AS 2133	AS 2133 D					
TURBOVAC SL 80	LAS 2368	LAS 2368 D					
TURBOVAC TW 70 H	AS 2368	AS 2368 D					
TURBOVAC 151	AS 2134	AS 2134 D					
TURBOVAC TW 250 S	AS 2168	AS 2168 D					
TURBOVAC SL 300	LAS 2369	LAS 2369 D					
TURBOVAC TW 300	AS 2369	AS 2369 D					
TURBOVAC 361	AS 2135	AS 2135 D					
TURBOVAC 600 / 1000	AS 2136	AS 2136 D					
TURBOVAC TW 701 / 690	AS 2330	AS 2330 D					
TURBOVAC 1100	AS 2137	AS 2137 D					

Service-Dienstleistungen für magnetisch gelagerte Turbomolekular-Vakuumpumpen

Komplett-Überholung im Servicecenter

Die Komplett-Überholung im Servicecenter beinhaltet:

komplette Demontage, Reinigung, Austausch aller Verschleißteile, Montage, elektrische Sicherheitsprüfung, Endprüfung inklusive Vibrationsmessung

Komplett-Überholung mit Dekontamination im Servicecenter

Die Komplett-Überholung mit Dekontamination im Servicecenter beinhaltet:

komplette Demontage, Reinigung und Dekontamination, Austausch aller Verschleißteile, Montage, elektrische Sicherheitsprüfung, Endprüfung inklusive Vibrationsmessung

Bestelldaten	Komplett-Überholung im Servicecenter	Komplett-Überholung mit Dekontamination im Servicecenter					
	KatNr.	KatNr.					
Für Pumpe							
MAG W 300 / 400	AS 2300	AS 2300 D					
MAG W 600 / 700	AS 2600	AS 2600 D					
MAG W 1300 iP (L) – 2201 iP (L)	AS 2700	AS 2700 D					
MAG (W) 1600 / 2000	AS 2164 ¹⁾	AS 2164 D ¹					
MAG (W) 830 / 1300 / 1500	AS 2370 ¹⁾	AS 2370 D 1)					
MAG 900 / 1000 / 1200	AS 2160 ¹⁾	AS 2160 D 1)					
MAG 2200	AS 2200 ¹)	AS 2200 D 1)					
MAG 2800 / 3200	AS 2800 ¹)	AS 2800 D 1)					

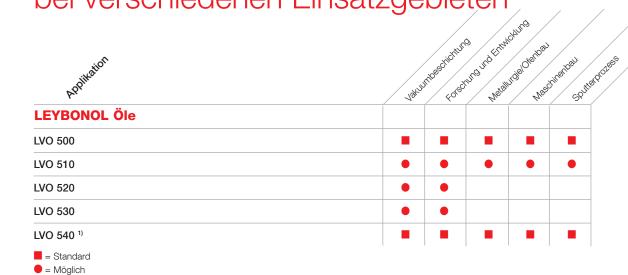
Hinweise

Die angegebenen Leistungen beinhalten die Kosten für Material und Arbeitszeit für Standardmodelle. Leistungen für Varianten auf Anfrage.

Werden zusätzliche Ersatzteile zur Reparatur benötigt, so werden diese nach Kostenvoranschlag separat berechnet.

inklusive Rotorwechsel

Allgemeines


Applikation und Zubehör für Diffusionspumpen

											/ /				
Pumpen	di	300	300	8,700	2000	3000	3,200	10 01		0/09	08 08 08 08	000	7200 1200	1,000	'k
Applikation															
Vakuum-Beschichtung (z.B. sputtern)															
Forschung und Entwicklung															
Metallurgie/Ofenbau															
Maschinenbau															
Sputterprozess															
Secondary Metallurgy (z.B. VIM, VID)															
Hochvakuumöfen															
Kristallziehanlagen															
Elektronenstrahl-Schweißen															
Nitrierhärtung															
Trocknungsanlagen															

^{*} DIJ 35 lieferbar ab 11/2017, DIJ 10 und DIJ 16 lieferbar ab 03/2018

Zubehör	Seite														
Astrotorus-Dampfsperre	84														
Thermo-Schutzschalter	86														
Kontakt-Thermometer	86														
Widerstands-Thermometer Pt100	86														
Wasser-Strömungswächter	87														
Energieregler	88														
Adsorptionsfalle	90	Zur Erzeugung eines ölfreien Vakuums mit ölgedichteten Vorvakuumpumpen													
Ventile	92		Eckventile mit elektropneumatischem Antrieb DN 250 ISO-K bis DN 1000 ISO-K												

Öl für Diffusionspumpen bei verschiedenen Einsatzgebieten

Nur für OB-Pumpen

Die Tabelle ist dafür bestimmt, generelle Einsatzmöglichkeiten zu prüfen. Eventuell muss Ihre spezifische Applikation genauer eingegrenzt werden. Kontaktieren Sie hierzu unseren technischen Support.

ocnvakuum-Pumpen

Öl für Diffusionspumpen für verschiedene Pumpentypen

			/ /			/ ,	/ /	/ ,	/ ,	/ ,	/ ,	/ ,	/ /	
Puriper	/	00	OB 12	00/00	000	3,2000	* \30		0/03	1,70	0	000		-OJE 630
Punt	OIR O	2000 S	o de	018 5000	13000	5 ₂ /4;	10 OF	/¢ //	30/0/	55 OF	600	1200	1800 E	301E
LEYBONOL Öle														
LVO 500														
LVO 510	•	•	•	•	•	•	•	•	•				•	
LVO 520	•	•	•	•	•	•	•	•	•				•	
LVO 530	•	•	•	• •	•	•	•	•	•				•	
LVO 540														

= Standard

= Möglich

Hinweis

Alle Öle können verwendet werden. Standardmäßig werden die Pumpen ohne Öl ausgeliefert.

Die Tabelle ist dafür bestimmt, generelle Einsatzmöglichkeiten zu prüfen. Eventuell muss Ihre spezifische Applikation genauer eingegrenzt werden. Kontaktieren Sie hierzu unseren technischen Support.

Informationen über Öl-Spezifikationen finden Sie im Katalog-Teil "Öle / Fette / Betriebsmittel LEYBONOL®".

Wirkungsweise von Treibmittelpumpen

Die wesentlichen Bestandteile von Treibmittelpumpen, die mit dampfförmigen Treibmitteln betrieben werden, sind:

- Gekühltes Pumpengehäuse mit Ansaug- und Auslass-Stutzen
- Düsensystem
- Siedegefäß

Bei Treibmittelpumpen wird eine für den Betrieb ausreichende Dampfmenge durch Erhitzen einer Flüssigkeit in einem Siedegefäß erzeugt und den Düsen zugeführt. Die Düsen sind in der Regel so ausgebildet, dass sie den Dampfstrom auf Überschallgeschwindigkeit beschleunigen (Lavaldüse) und in einem bestimmten Neigungswinkel auf das Pumpengehäuse lenken. Das Pumpengehäuse wird gekühlt, so dass

das dampfförmige Treibmittel kondensiert und als Flüssigkeit wieder in das Siedegefäß zurückfließt.

Die Pumpwirkung von Treibmittelpumpen kommt durch die Diffusion der zu pumpenden Gase in den Dampfstrahl zustande.

Bis zum Vorvakuum-Stutzen wird das abzupumpende Gas so stark komprimiert, dass es durch eine Vorvakuumpumpe abgepumpt werden kann.

Öl-Diffusionspumpen

Im Vergleich zu anderen Treibmittelpumpen ist die Dampfdichte im Siedegefäß und im Treibmitteldampfstrahl niedrig; somit können die Gasmoleküle nahezu vollständig in den Dampfstrahl eindiffundieren. Dies bedingt, dass der größte Teil der vom Dampfstrom aufgenommenen Moleküle abgesaugt wird.

Das Saugvermögen von Diffusionspumpen ist daher bezogen auf die Fläche der Ansaugöffnung außerordentlich hoch und über den ganzen Arbeitsbereich – beginnend bei einem Einlassdruck von ca. 10⁻³ mbar bis zu sehr niedrigem Druck – konstant, da in diesem Druckbereich der Dampfstrahl vom Druck im Vakuumbehälter nicht beeinflusst wird.

Arbeitstechnik mit Öl-Diffusionspumpen

Vorvakuum

Diffusionspumpen benötigen für den Betrieb immer eine entsprechend dimensionierte Vorvakuumpumpe (siehe technische Daten). Die Größe und Art der Vorpumpe ist abhängig von dem jeweiligen Betriebszustand und der abzupumpenden Gasmenge.

- Dauerbetrieb bei Drücken über
 10⁻⁴ mbar große Gasmengen
- Dauerbetrieb bei Drücken unter
 10⁻⁴ mbar kleinere Gasmengen

Beim Einsatz von Diffusionspumpen muss der Vakuumbehälter über ein Ventil (3) und Grobpumpleitung direkt mit der Vorpumpe verbunden sein. Dadurch erfolgt die Vorevakuierung des Vakuumbehälters auf Übergabedruck. Diffusionspumpe und Treibmittel werden beim Öffnen des HV-Ventils (4) geschont. Vor dem Belüften des Vakuumbehälters sind das VV-Ventil (2) und HV-Ventil (4) abzusperren, die Diffusionspumpe bleibt dabei betriebsbereit.

$HM(\forall)$ VM2(∀ DIJ Öl-Diffusionspumpe mit Düsenhut-Dampfsperre P1 Drehschieber-Vakuumpumpe P2 Wälzkolbenpumpe Р3 Drehschieber-Vakuumpumpe (optional für Haltevakuum) \/1 Hochvakuum-Ventil V2 Vorvakuum-Ventil V3 Bypass-Ventil Baffle Vorvakuum-Ventil DIJ V4 (optional für Haltevakuum) Baffle Dampfsperre BV Belüftungsventil DIP НМ Hochvakuum-Messstelle VM1 (≯)⊣ VM1 Vorvakuum-Messstelle (DIJ) VM2 Vorvakuum-Messstelle V2 (Vakuumkammer Kunde)

Schema eines Diffusionspumpstands

Saugvermögen

Das Saugvermögen einer Pumpe ist der Volumendurchfluss durch die Ansaugöffnung der Pumpe. Diffusionspumpen haben für leichte Gase ein höheres Saugvermögen als für schwere Gase.

Treibmittelrückströmung

Die störende Erscheinung der Rückströmung von Treibmittel-Molekülen beruht darauf, dass die aus dem Düsensystem austretenden Treibmittel-Moleküle nicht nur in Strömungsrichtung zur gekühlten Pumpenwand fliegen, sondern durch Stöße untereinander und durch Reflexion an der Pumpenwand Rückströmungs-Komponenten erhalten und sich dadurch in die Richtung zum Vakuumbehälter hin bewegen.

Bei den DIP-Pumpen beträgt die Ölrückströmung nur wenige µg je cm² Ansaugfläche in der Minute. Die Treibmittel-Rückströmung kann durch eine Düsenhut-Dampfsperre oder eine Astrotorus-Dampfsperre weitgehend verhindert werden.

Ölrückströmung bei Diffusionspumpen

- Pumpe ohne Dampfsperre ca. 1 · 10⁻² mg · cm⁻² · min⁻¹
- Pumpe mit Düsenhut-Dampfsperre ca. 1 · 10⁻³ mg · cm⁻² · min⁻¹
- Pumpe mit Astrotorus-Dampfsperre (T = 10 °C)

ca. $1 \cdot 10^{-5} \, \text{mg} \cdot \text{cm}^{-2} \cdot \text{min}^{-1}$

Die angegebenen Werte sind bei einem Ansaugdruck < $1\cdot 10^{-4}$ mbar gemessen worden und gelten für LEYBONOL LVO 500.

Erreichbarer Enddruck

Der Enddruck in einer Vakuumanlage ist nicht nur von der Art und dem Saugvermögen der Diffusionspumpe abhängig, sondern wird auch durch den Dampfdruck des verwendeten Treibmittels, von der Form und Temperatur der Dampfsperre sowie von Leckage an Verbindungsflanschen oder Schweißnähten und dem Zustand der Oberfläche innerhalb des Vakuumbehälters bestimmt.

Bei Ausschluss aller Einflüsse, die eine Verschlechterung des Druckes im Vakuumbehälter infolge von Undichtheiten und Verschmutzung der Wände hervorrufen, können Enddrücke entsprechend der Tabelle "Erreichbarer Enddruck mit Öl-Diffusionspumpen (DIP)" im Abschnitt "Allgemeines" erreicht werden.

Zur Erzeugung eines niedrigen öldampffreien Vakuums hat sich in der-Praxis folgende Kombination bewährt:

 Wassergekühlte Düsenhut-Dampfsperre als integrierter Bestandteil der Diffusionspumpe zusammen mit wassergekühlter Astrotorus-Dampfsperre, die als zusätzliches Bauteil auf dem Hochvakuum-Flansch der Diffusionspumpe montiert werden können.

Dichttechnik

Für Enddrücke bis 10⁻⁸ mbar genügen Ausheiz-Temperaturen bis 150 °C. Als Dichtwerkstoff sind FPM-Dichtringe (FPM = Fluorkautschuk, temperaturbeständig bis 150 °C) oder Ultra-Dichtscheiben aus Aluminium zu verwenden.

Um Druckschwankungen zu vermeiden, sind zwischen Diffusionspumpe und Astrotorus-Dampfsperre Ultra-Dichtscheiben zu verwenden.

Für Enddrücke unterhalb 10° mbar sind Ausheiz-Temperaturen bis 400°C für den Rezipienten erforderlich. Es ist jedoch vollkommen ausreichend, nur den Vakuumbehälter auf 400°C auszuheizen und die Temperaturverteilung auf der Dampfsperre so zu wählen, dass die Temperatur am Ansaugflansch der Pumpe 150°C nicht überschreitet.

Somit können dann auch hier FPM-Dichtringe oder Ultra-Dichtscheiben aus Aluminium eingesetzt werden.

Kühlung

Die Kühlwassertemperatur sollte 25 °C an der Eingangs- und 30 °C an der Ausgangsseite nicht überschreiten, da sonst keine ausreichende Kondensation des Treibmitteldampfes gewährleistet ist. Wird die Kühlung der Pumpe und der Dampfsperre von einem einzigen Kreislauf durchflossen, so muss die Kühlwasserleitung stets so gelegt werden, dass erst die Dampfsperre und dann die Diffusionspumpe vom Kühlwasser durchflossen werden. Denn der Enddruck im Vakuumbehälter hängt wesentlich von der Kondensations-Temperatur des verwendeten Treibmittels an der Dampfsperre ab.

Erreichbarer Enddruck mit Öl-Diffusionspumpen

Erreichbarer Enddruck 1)

LEYBONOL LVO 500

Ohne Dampfsperre	mbar	1,5 · 10 ⁻⁶
Mit Düsenhut-Dampfsperre	mbar	5,0 · 10 ⁻⁷
Mit Astrotorus-Dampfsperre	mbar	1,5 · 10 ⁻⁷

¹⁾ Erreicht bei Beachtung der unter "Dichttechnik" im Abschnitt "Allgemeines", Absatz "Öl-Diffusionspumpen" angeführten Hinweise und nach mehrstündigem Ausheizen des angeschlossenen Vakuumbehälters bei 200 °C

Produkte

DIP-Pumpen, wassergekühlt

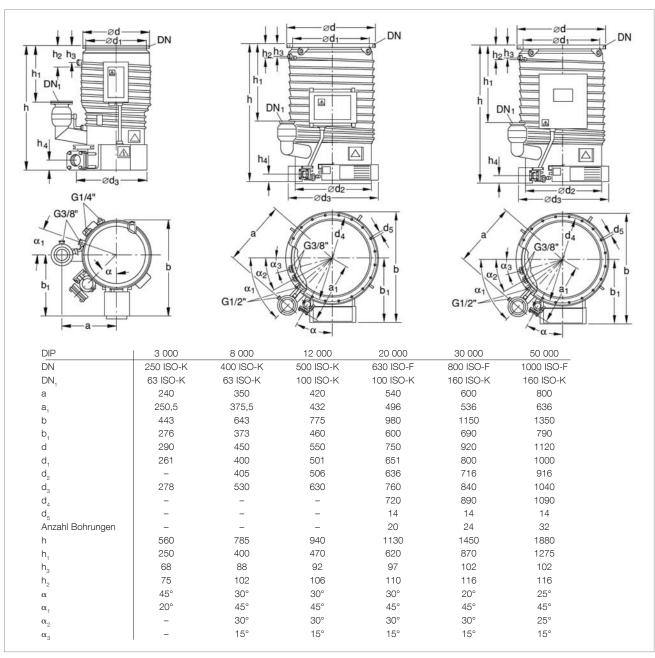
DIP 20 000 mit Energieeffizienzreglung (EER)

Die DIP-Pumpenreihe wurde für den Einsatz in industriellen Anlagen entwickelt. Herausragende vakuumtechnische Leistungsdaten zusammen mit der diesem Pumpentyp eigenen Robustheit machen unsere Diffusionspumpen zum zuverlässigen Bestandteil in Hoch- und Feinvakuumanwendungen.

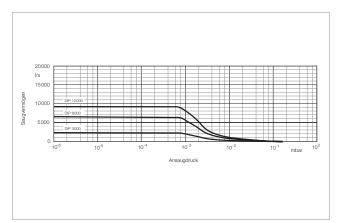
Vorteile für den Anwender

- Hohes Saugvermögen im Feinvakuum- und Hochvakuum-Bereich
- Niedriger erreichbarer Enddruck
- Integrierte, wassergekühlte Düsenhut-Dampfsperre garantiert geringe Ölrückströmung in den Rezipienten
- Geringer Ölverlust auch bei hohem Gasdurchsatz – durch integriertes, wassergekühltesV orvakuumbaffle
- Hohe Vorvakuum-Beständigkeit auch bei verminderter Heizleistung
- Die Heizpatronen sind über Heizeinsätze von außen zugänglich in das Siedegefäß eingebaut. Damit ist im Servicefall ein schneller Austausch einzelner Heizpatronen – auch bei heißer Pumpe – möglich
- Elektrische Absicherung jeder einzelnen Heizpatrone über einen Sicherungsautomatengewäh rleistet hohe elektrische Sicherheit

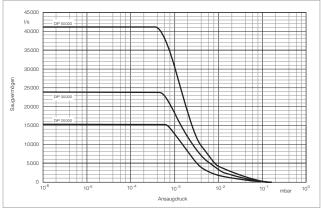
- Ein standardmäßig eingebauter Thermostat dient als Temperatur-Überlastschutz. Dieser stellt sicher, dass die Heizpatronen sich nicht überhitzen können.
- Alle Pumpen sind vorbereitet zur Montage eines Thermo-Schutzschalters (Option) zur Kontrolle des Kühlwasser-Kreislaufes und eines Kontakt-Zeigerthermometers (Option) zur Überwachung der Betriebs-Temperatur der Diffusionspumpe.
- Die Ölstandsanzeige mittels Schauglas ermöglicht eine einfache Überwachung des aktuellen Ölstandes.
- Alle DIP-Pumpen werden im Innenraum ölfrei gereinigt ausgeliefert. Der Innenraum ist evakuiert. Die Pumpen können im Auslieferungs-Zustand ohne weitere Reinigung auch mit Silikonöl betrieben werden.


Typische Anwendungen

Die Diffusionspumpen der DIP-Typenreihe werden in Beschichtungsanlagen, Vakuumschmelz- und Trocknungsanlagen sowie im Vakuumofenbau und der Metallurgie eingesetzt.


Lieferumfang

Die DIP-Pumpen werden anschlussfertig jedoch ohne Treibmittelfüllung geliefert.


Der Pumpeninnenraum ist ölfrei gereinigt. Der Innenraum ist evakuiert. Hoch- und Vorvakuum-Flansche sind mit Dicht- und Zentrierringen, Transportflanschen und Spannelementen ausgerüstet.

Maßzeichnung der DIP 3 000 (links), der DIP 8 000 und DIP 12 000 (mitte) und der DIP 20 000 bis DIP 50 000 (rechts)

Saugvermögenskurven der DIP-Pumpen 3000 bis 12000 in Abhängigkeit vom Ansaugdruck

Saugvermögenskurven der DIP-Pumpen 20000 bis 50000 in Abhängigkeit vom Ansaugdruck

Technische Daten DIP 3000 DIP 8000 DIP 12000

Hochvakuum-/Vorvakuum-Anschluss [ON 250 ISO-K/63 ISO-K	400 ISO-K/63 ISO-K	500 ISO-K/100 ISO-K
Saugvermögen für Luft 1)			
0 0	1/s 3 000	8 000	12 000
Arbeitsbereich mb	ear < 10 ⁻² - 10 ⁻⁷	< 10 ⁻² - 10 ⁻⁷	< 10 ⁻² - 10 ⁻⁷
Endtotaldruck 1) mb	ear < 5 · 10 ⁻⁷	< 5 · 10 ⁻⁷	< 5 · 10 ⁻⁷
Max. zulässiger Vorvakuumdruck mb	oar 6 · 10 ⁻²	6 · 10 ⁻²	6 · 10 ⁻²
Treibmittelfüllung, min. / max.	I 1,0 / 1,4	1,7 / 3,4	2,4 / 5,3
Netzanschluss			
Standard EURO, 50/60 Hz	V 230 ~ 1 Ph	400 ~ 3 Ph Y	400 ~ 3 Ph Y
Standard USA, 50/60 Hz	V 230 ~ 1 Ph	460 ~ 3 Ph Y	460 ~ 3 Ph Y
Sonder, 50/60 Hz	V -	230 ~ 3 Ph Δ	230 ~ 3 Ph Δ
Heizleistung k	2,4	4,8	7,2
Anzahl der Heizpatronen	2	6	9
Anheizzeit n	nin < 25	< 25	< 25
Kühlwasser (minimal)			
für die Pumpe ²⁾	l/h 160	290	500
für Düsenhut-Dampfsperre	l/h 20	30	50
Maximaler Zulaufdruck	oar 6	6	6
Anzahl der Kühlkreisläufe			
(inklusive Düsenhut-Dampfsperre)	2	2	2
Kühlwasseranschluss			
Pumpe	G 3/8"	1/2"	1/2"
Düsenhut-Dampfsperre	G 1/4"	3/8"	3/8"
Gewicht, ca.	kg 29	70	102
Empfohlene Vorvakuum-Pumpen 3)			
bei Arbeitsdruck > 10 ⁻⁴ mbar bei Arbeitsdruck < 10 ⁻⁴ mbar	TRIVAC D 65 B + W 251	SV 300 + W 251 TRIVAC D 65 B + W 251	SV 300 + W 501 TRIVAC D 65 B + W 251

Bestelldaten DIP 3 000 DIP 8 000 DIP 12 000

	KatNr.	KatNr.	KatNr.	
ÖI-Diffusionspumpe				
Standard EURO	222 10	222 20	222 25	
Standard USA	222 10	500 670	500 591	
Sonder	_	500 649	22225V003	
Astrotorus-Dampfsperre	227 50	227 60	227 65	
Wasser-Strömungswächter	500006623	500006623	500006623	
Thermo-Schutzschalter	122 84	122 84	122 84	
Kontakt-Thermometer	218 81	218 81	218 81	
Widerstands-Thermometer				
Pt100 Messfühler	200 02 958	200 02 958	200 02 958	
Treibmittel 4)	siehe Katalog-Teil "Öle / Fette / Betriebsmittel LEYBONOL"			

¹⁾ Gemessen nach DIN 28 427 mit **LEYBONOL LVO 500** als Treibmittel

 $^{^{2)}}$ Die Kühlwassermenge bezieht sich auf ΔT = 10 °C. Die Austrittstemperatur sollte 30 °C nicht übersteigen

³⁾ Ein- und zweistufige Drehschieber- (TRIVAC; SOGEVAC) aus unserem Vorvakuum-Pumpen-Programm gemeinsam mit Wälzkolben-Vakuumpumpen (RUVAC) in Pumpsystemen

⁴⁾ Das Öl muss separat bestellt werden

Technische Daten DIP 20 000 DIP 30 000 DIP 50 000

Hochvakuum-/Vorvakuum-Anschluss	DN	630 ISO-F/100 ISO-K	800 ISO-F/160 ISO-K	1000 ISO-F/160 ISO-K
Saugvermögen für Luft ¹⁾ unterhalb 1 · 10 ⁻⁴ mbar	l/s	20 000	30 000	50 000
Arbeitsbereich m	bar	< 10 ⁻² - 10 ⁻⁷	< 10 ⁻² – 10 ⁻⁷	< 10 ⁻² - 10 ⁻⁷
Endtotaldruck 1) m	bar	< 5 · 10 ⁻⁷	< 5 · 10 ⁻⁷	< 5 · 10 ⁻⁷
Max. zulässiger Vorvakuumdruck m	bar	6 · 10 ⁻²	6 · 10 ⁻²	6 · 10 ⁻²
Treibmittelfüllung, min. / max.	I	7,0 / 11,0	10,0 / 15,0	15,0 / 25,0
Netzanschluss Standard, EURO 50/60 Hz Standard USA, 50/60 Hz Sonder, 50/60 Hz	V V V	400 ~ 3 Ph Y 460 ~ 3 Ph Y 230 ~ 3 Ph Δ	400 ~ 3 Ph Y 460 ~ 3 Ph Y 230 ~ 3 Ph Δ	400 ~ 3 Ph Y 460 ~ 3 Ph Y 230 ~ 3 Ph Δ
Reduzierter Stromverbrauch mit Energieregler (30% Einsparung)	kW	8,4	12,6	16,8
Heizleistung	kW	12	18	24
Anzahl der Heizpatronen		12	18	24
Anheizzeit	min	< 25	< 30	< 30
Kühlwasser (minimal) für die Pumpe ²⁾ für Düsenhut-Dampfsperre Maximaler Zulaufdruck	l/h l/h bar	600 60 6	900 80 6	1500 150 6
Anzahl der Kühlkreisläufe (inklusive Düsenhut-Dampfsperre)		2	3	3
Kühlwasseranschluss Pumpe Düsenhut-Dampfsperre	G G	1/2" 3/8"	1/2" 3/8"	1/2" 3/8"
Gewicht, ca.	kg	172	296	560
Empfohlene Vorvakuum-Pumpen ³⁾ bei Arbeitsdruck > 10 ⁻⁴ mbar bei Arbeitsdruck < 10 ⁻⁴ mbar		SV 200 + W 501 TRIVAC D 65 B + W 251	SV 300 + W 1001 SV 300 + W 251	SV 630 B + W 2001 SV 300 + W 501

DIP 20 000 DIP 30 000 DIP 50 000

	KatNr.	KatNr.	KatNr.	
ÖI-Diffusionspumpe				
Standard EURO mit Steuergerät	222 30V001	222 35V001	222 40V001	
Standard USA mit Steuergerät	222 30V002	222 35V002	222 40V002	
Standard EURO	222 30	222 35	222 40	
Standard USA	500 882	500 665	500 728	
Sonder	22230V004	22235V006	500 654	
Energieregler-Nachrüstsatz	503 647V001	503 648V001	503 649V001	
Energieregler-Nachrüstsatz USA	503 647V002	503 648V002	503 649V002	
Astrotorus-Dampfsperre	227 70	227 75	227 80	
Wasser-Strömungswächter	500006623	500006623	500006623	
Thermo-Schutzschalter	122 84	122 84	122 84	
Kontakt-Thermometer	218 81	218 81	218 81	
Widerstands-Thermometer				
Pt100 Messfühler	200 02 958	200 02 958	200 02 958	
Treibmittel 4)	siehe Katalog-Teil "Öle / Fette / Betriebsmittel LEYBONOL"			

Gemessen nach DIN 28 427 mit **LEYBONOL LVO 500** als Treibmittel

 $^{^{2)}}$ Die Kühlwassermenge bezieht sich auf ΔT = 10 °C. Die Austrittstemperatur sollte 30 °C nicht übersteigen

³⁾ Ein- und zweistufige Drehschieber- (TRIVAC; SOGEVAC) aus unserem Vorvakuum-Pumpen-Programm gemeinsam mit Wälzkolben-Vakuumpumpen (RUVAC) in Pumpsystemen

⁴⁾ Das Öl muss separat bestellt werden

DIJ-Pumpen, wassergekühlt

DIJ 20 mit Stecker (links), DIJ 20 mit Sicherungskasten (mitte) und DIJ 630 mit Energieeffizienzrealung (EER) (rechts)

Vorteile für den Anwender

- Niedrige Betriebskosten durch minimierten Stromverbrauch
- Stabiler Durchsatz in 10⁻² bis 10⁻³ mbar Bereich (z. B. für Sputterprozesse oder Stahlentgasung)
- Flexible Flanschausführungen Flanschvarianten:
 - ANSI- / Inch-Flansche mit O-Ring
 - ISO-F- oder ISO-K-Flansche mit Zentrierring
- Höchste Anlagenverfügbarkeit
- Intelligente Temperatursteuerung sichert minimale Belastung und längste Lebensdauer für Heizpatronen und Öl
- Optimiertes Dampfsperren-Design
- Verschiedene elektrische Anschlussmöglichkeiten
 - Drei verschiedene Anschluss varianten vorhanden inkl. Energieregler (ECU)
- 4 + 1 Stufensystem
 - Die 4 Diffusionspumpstufen erzeugen ein hervorragendes Hochvakuumsaugvermögen
 - Die zusätzliche Ejektorstufe sichert stabilen Durchsatz bei Drücken
 > 10⁻³ mbar

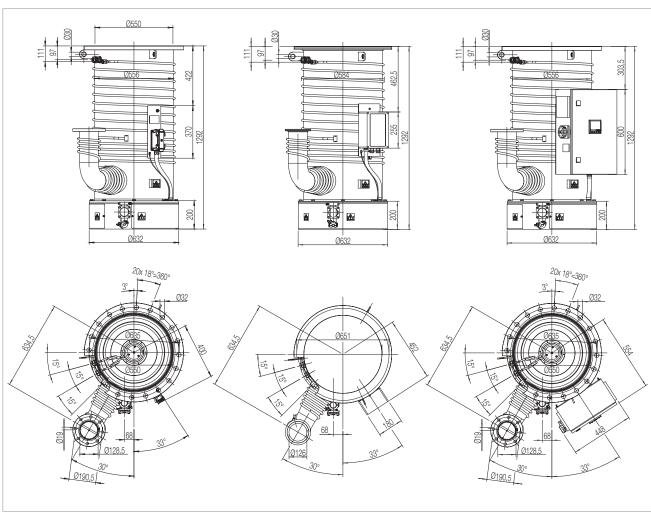
Typische Anwendungen

Die Diffusionspumpen der DIJ-Typenreihe werden in Beschichtungsanlagen, Vakuumschmelz- und Trocknungsanlagen sowie im Vakuumofenbau und der Metallurgie eingesetzt.

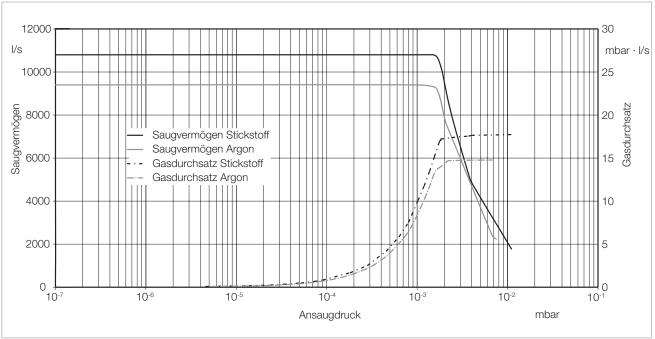
Text neu, aus Vertriebstext entnommen!

Die Öl-Diffusionpumpen von Leybold sind ideal geeignet für alle industriellen Fein- und Hochvakuum Anwendungen.

Die DIJ Serie überzeugt durch ihre innovative und energieeffiziente Konstruktion. Wichtige Eigenschaften sind ein neues Heizkonzept, variable Flanschanschlüsse; komplett ausgestattet mit Vorvakuumbaffle und Düsenhutdampfsperre, variable Elektroanschlussvarianten und ein leistungsstarkes 5-stufiges Jetsystem.


Lieferumfang

Die DIJ-Pumpen werden anschlussfertig jedoch ohne Treibmittelfüllung geliefert.


Zum Lieferumfang der DIJ-Pumpen gehört standardmäßig:

- Zentrierring mit Zentrierstern, O-Ring und Außenring für den Hochvakuum-Flansch
- Zentrierring mit Einsatz für Vorvakuumbaffle, O-Ring und Außenring für den Vorvakuum-Flansch.

Hoch- und Vorvakuum-Flansch sind mit Transportflanschen und Pratzen vakuumdicht verschlossen. Die Pumpen sind innen gereinigt und werden evakuiert ausgeliefert.

Maßzeichnung der DIJ 20 mit Stecker (links), DIJ 20 mit Sicherungskasten (mitte) und DIJ 630 mit Energieeffizienzreglung (EER) (rechts)

Saugvermögens- und Gasdurchsatzkurven der DIJ-Pumpen für Stickstoff und Argon in Abhängigkeit vom Ansaugdruck

Technische Daten

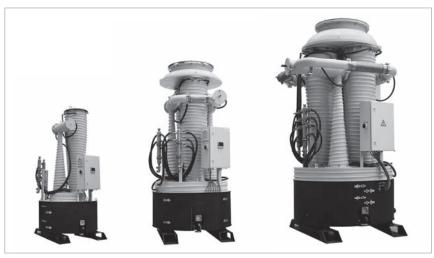
DIJ 10 DIJ 320 DIJ 16 DIJ 500 DIJ 20 DIJ 630 DIJ 35 DIJ 1000

Hochvakuum (HV)-Flansch	DN	10" ANSI	320 ISO-K	16"ANSI	500 ISO-K	20" ANSI	630 ISO-K	35" ANSI	1000 ISO-F
Vorvakuum-Flansch	DN	2" ANSI	63 ISO-K	3"ANSI	100 ISO-K	4" ANSI	160 ISO-K	6" ANSI	200 ISO-K
Saugvermögen 1) für									
Stickstoff < 10 ⁻⁴ mbar		2.8	300	6.8	800	10	800	28 000	
Arbeitsbereich	mbar	< 10-2	¹ – 10 ⁻⁷	< 10-2	² – 10 ⁻⁷	< 10-2	[!] – 10 ⁻⁷	< 10-2	² – 10 ⁻⁷
Endtotaldruck 2)	mbar	< 5	· 10 ⁻⁷	< 5	· 10 ⁻⁷	< 5	· 10 ⁻⁷	< 5	· 10 ⁻⁷
Max. zulässiger Vorvakuumdruck	mbar	5.	10-1	5 ·	10-1	5 ·	10-1	5.	10-1
Treibmittelfüllung, min. / max.	I	1,0	/ 1,4	1,7	/ 3,4	5,0	/ 7,0	12,0	/ 18,0
Netzspannung	V	1 ~ 23	0 /N/PE	3 ~ 40	0 /N/PE	3 ~ 40	0 /N/PE	3 ~ 40	0 /N/PE
je nach Variante, 50 / 60 Hz	٧	1 ~ 23	0 /N/PE	3 ~ 46	0 /N/PE	3 ~ 46	0 /N/PE	3 ~ 46	0 /N/PE
Heizleistung	kW	2	,4	3	3,6	1(0,8	2	1,6
Anzahl der Heizpatronen			2		3	9		18	
Anheizzeit	min	< 25		<	25	< 25		< 30	
Kühlwasser (minimal) 2)									
für die Pumpe	l/h	10	60	290		600		1 200	
für die Düsenhut-Dampfsperre	l/h	2	20	50		80		1.	50
Anzahl der Kühlkreisläufe									
(inkl. Düsenhut-Dampfsperre)		:	2		2	:	2		2
Kühlwasseranschluss									
Pumpe	G		/8"		/2"		/2"		/2"
Düsenhut-Dampfsperre	G	1/	/4"	3,	/8"	3/	/8"	3,	/8"
Gewicht ca.	kg	4	15	1	10	2	08	7.	20
Empf. Vorvakuumpumpen 3)									
bei Arbeitsdruck > 10 ⁻⁴ mbar									
ölgedichtet		SV 100 B & W 501		SV 200 & W 501		SV 300 B	& W 1001	SV 630 B	& W 2001
trocken verdichtend		-		DV 450 & W 501		DV 450 8	& W 1001	DV 650 8	& W 2001
bei Arbeitsdruck < 10 ⁻⁴ mbar									
ölgedichtet			25 B		& W 251	SV 100 E	3 & W 501		& W 1001
trocken verdichtend		ECODR'	Y plus 60	ECODRY plu	ıs 60 & W 251		-	DV 450 8	& W 1001
Empf. Haltepumpe 3)		TRIVAC	D 25 B	TRIVAC	D 40 B	TRIVAC	D 65 B	TRIVAC	D 65 B

¹⁾ Gemessen nach DIN 28 427 mit DC 704 normal als Treibmittel.

²⁾ Die Kühlwassermenge bezieht sich auf ΔT = 10 °C. Die Austrittstemperatur sollte 30 °C nicht übersteigen.

³⁾ Ein- und zweistufige Drehschieberpumpen (TRIVAC; SOGEVAC) oder trockenverdichtende Pumpen (ECODRY plus ;DRYVAC) aus unserem Vorvakuumpumpenprogramm gemeinsam mit Wälzkolben-Pumpen (RUVAC) in Pumpsystemen.


Bestelldaten

DIJ 10 DIJ 320 DIJ 16 DIJ 500 DIJ 20 DIJ 630 DIJ 35 DIJ 1000

	KatNr.	KatNr.	KatNr.	KatNr.	KatNr.	KatNr.	KatNr.	KatNr.
mit Stecker 400 V / 50/60 Hz / 3ph PN / Y	22213V000	22214V000	22223V000	22224V000	22227V000	22228V000	22243V000	22244V000
mit Stecker 460 V / 50/60 Hz / 3ph PN / Y	22213V001	22214V001	22223V001	22224V001	22227V001	22228V001	22243V001	22244V001
mit Sicherungskasten 400 V / 50/60 Hz / 3ph PN / Y	22213V005	22214V005	22223V005	22224V005	22227V005	22228V005	22243V005	22244V005
mit Sicherungskasten 460 V / 50/60 Hz / 3ph PN / Y	22213V006	22214V006	22223V006	22224V006	22227V006	22228V006	22243V006	22244V006
mit EER 400 V / 50/60 Hz / 3ph PN / Y	-	-	-	-	22227V009	22228V009	22243V009	22244V009
mit EER 460 V / 50/60 Hz / 3ph PN / Y	-	-	-	-	22227V010	22228V010	22243V010	22244V010
Zubehör								
Wasser-Strömungswächter	500006623	500006623	500006623	500006623	500006623	500006623	500006623	500006623
Thermo-Schutzschalter	122 84	122 84	122 84	122 84	122 84	122 84	122 84	122 84
Astrotorus-Dampfsperre	227 51	227 50	227 61	227 60	227 71	227 70	227 81	227 80
Eckventil	504138V008 504138V002 504138V008 504138V002 504138V008 504138V002 504138V008 504138V002							
Treibmittel 1)	siehe Katalog-Teil "Öle / Fette / Betriebsmittel LEYBONOL"							

¹⁾ Das Öl muss separat bestellt werden

Öl-Booster OB 6000 bis OB 18000

Öl-Booster OB 6000 (links), OB 12000 (mitte) und OB 18000 (rechts)

Vorteile für den Anwender

- Sehr großes Saugvermögen bei kleiner Baugröße
- Pumpengrößen 6 000, 12 000 und 18 000 m³/h
- Einfache Bedienung
- Robust und langlebig
- Wählbare Flanschanschlüsse (nur OB 12 000 und 18 000)
- Einfacher Pumpenaufbau ermöglicht kleine Ersatzteilbevorratung
- Durch baugleichen Pumpenteile (wie Heizelemente, Diffusions- und Jetkörper) für alle OB Pumpengrößen ist ein leichter Austausch der Komponenten möglich
- Moderne elektronische Pumpenüberwachung (SPS gesteuert)
- Energieüberwachungseinheit zur Einsparung von elektrischer Energie (optional)
- Hohe Energieeffizienz durch direkte Heizung
- Die optimierte Heizungsauslegung erlaubt lange Ölstandzeiten

Typische Anwendungen

- Vakuuminduktionsschmelzen (VIM) oder Vakuuminduktionsentgasung (VID) von Sonderlegierungen sind wichtige metallurgische Prozessschritte
- Abhängig von der benötigten Stahlqualität, ist der erforderliche
 Prozessdruck in solchen Anwendungen besonders niedrig
- Aufgrund höherer Nachfrage nach besseren Stählen z.B. aus der Automobil-, Baustoff- und Eisenbahnindustrie, werden sekundärmetallurgische Prozesse immer wichtiger

Die Öl-Booster Pumpen von Leybold haben sich in industriellen Hochvakuum-Anwendungen bewährt. Sie zeichnen sich durch hervorragende vakuumtechnische Leistungs-

daten aus und sind wegen ihrer robusten Konstruktion ein zuverlässiger Bestandteil in vielen Fein- und Hochvakuum-Anlagen.

Die wassergekühlte Öl-Booster Pumpe wurde insbesondere für den Einsatz im Grob- und Feinvakuum Bereich entwickelt. Die OB Pumpen von Leybold gewährleisten bei richtigem Einsatz maximales Saugvermögen bei hohem Gasdurchsatz.

Lieferumfang

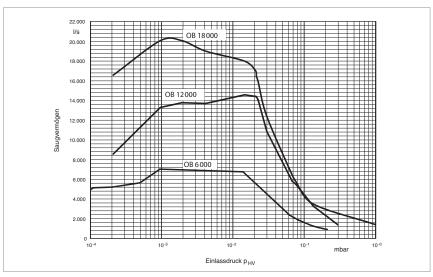
Die OB-Pumpen werden anschlussfertig jedoch ohne Treibmittelfüllung geliefert.

Der Pumpeninnenraum ist ölfrei und gereinigt.

Der Innenraum ist evakuiert. Hoch- und Vorvakuum-Flansche sind

mit Dicht- und Zentrierringen sowie Transportflanschen ausgerüstet.

Weiterhin sind Elektro-Sicherungskasten und Kühlwasserverteiler anschlussfertiger installiert.


Der enthaltene Pt100 gewährleistet eine sichere Überwachung der Öltemperatur.

Der installierte Übertemperaturschutzschalter überwacht den sicheren Betrieb der Pumpe.

Technische Daten Öl-Booster **OB** 6000 **OB 12000 OB 18000** Saugvermögen für Luft unterhalb 1,0 · 10⁻³ mbar mbar · l/s 6.000 12.000 18.000 Hochvakuum-Anschluss Standard DN 400 ISO-K 630 ISO-F 630 ISO-F 800 ISO-F / 1000 ISO-F / Optional DN 400 ISO-K / 500 ISO-K / 800 ISO-F / ASA 16 / ASA 18 ASA 16 / ASA 20 ASA 32 / ASA 35 Vorvakuum-Anschluss (Standard) DN 160 ISO-K 160 ISO-K 160 ISO-K 1 bis 10⁻⁶ 1 bis 10⁻⁶ Arbeitsbereich mbar 1 bis 10⁻⁶ Endtotaldruck 5 · 106 $5 \cdot 10^{6}$ $5 \cdot 10^6$ mbar Treibmittelfüllung I 45 60 90 Netzanschluss 400 ~ 3 Ph Y 400 ~ 3 Ph Y 400 ~ 3 Ph Y Standard EURO, 50/60 Hz ٧ 460 ~ 3 Ph Y Standard USA, 50/60 Hz ٧ 460 ~ 3 Ph Y 460 ~ 3 Ph Y 230 ~ 3 Ph Δ 230 ~ 3 Ph Δ 230 ~ 3 Ph Δ Sonder, 50/60 Hz ٧ Gewicht 450 850 1400 kg Kühlwasser 700 800 1360 Verbrauch l/h 1" 1" Anschlüsse G 1"

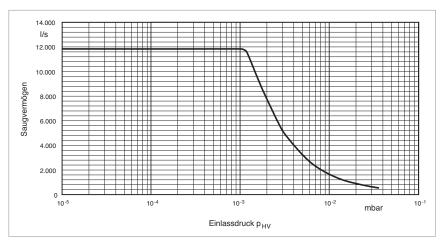
Bestelldaten Öl-Booster

	OB 6000	OB 12000	OB 18000		
	KatNr.	KatNr.	KatNr.		
Öl-Dampfstrahlpumpe					
Standard EURO	503750V001	503654V001	503508V001		
Standard USA	503750V006	503654V006	503508V006		
mit Steuergerät					
EURO-Version	503750V002	503654V002	503508V002		
US-Version	503750V005	503654V005	503508V005		
mit Steuergerät und Wasserdurchsatz-/					
Temperaturüberwachung					
EURO-Version (400 V)	503750V003	503654V003	503508V003		
US-Version (460 V)	503750V004	503654V004	503508V004		
Treibmittel	siehe Katalog-Teil "Öle / Fette / Betriebsmittel LEYBONOL"				

Saugvermögenskurve der Öl-Booster OB 6000 bis 18000 in Abhängigkeit vom Einlassdruck

LEYBOJET 630, wassergekühlt

LEYBOJET 630


Die Öl-Diffusionspumpen von Leybold haben sich in industriellen Hochvakuum-Anwendungen bewährt.

Sie zeichnen sich durch hervorragende vakuumtechnische Leistungsdaten aus und sind wegen ihrer robusten Konstruktion ein zuverlässiger Bestandteil in vielen Fein- und Hochvakuum-Anlagen.

Die wassergekühlte LEYBOJET 630 wurde insbesondere für den Einsatz im Feinvakuum-Bereich entwickelt.

Draufsicht | Drau

Maßzeichnung der LEYBOJET 630

Saugvermögenskurve der LEYBOJET 630 in Abhängigkeit vom Einlassdruck

Vorteile für den Anwender

- Hohes, stabiles Saugvermögen bis in den Feinvakuum-Bereich
- Niedriger Enddruck
- Geringe Ölrückströmung durch integrierte wassergekühlte Düsenhutdampfsperre
- Hohe Vorvakuum-Beständigkeit
- Jede Heizpatrone ist über einen Sicherungsautomaten abgesichert
- Unter Beibehaltung des bewährten Heizsystems – Heizeinsatz mit Wärmeleitblechen und Heizpatrone – verfügt die LEYBOJET 630 jetzt über eine zusätzliche Ejektordüse, dadurch wird bis in den Feinvakuum-Bereich eine stabile Saugleistung erzielt

Typische Anwendungen

Die LEYBOJET 630 werden in modernen Sputterprozessen sowie in Vakuumschmelz- und Trocknungs-Anlagen eingesetzt.

Lieferumfang

Die LEYBOJET 630 werden anschlussfertig jedoch ohne Treibmittelfüllung geliefert.

Der Pumpeninnenraum ist ölfrei gereinigt. Der Innenraum ist evakuiert. Hoch- und Vorvakuum-Flansche sind mit Dicht- und Zentrierringen, Transportflanschen und Spannelementen ausgerüstet.

Technische Daten

LEYBOJET 630

Hochvakuum-Anschluss	DN	630 ISO-F
Vorvakuum-Anschluss	DN	160 ISO-K
Saugvermögen für Luft 1) bei 1 · 10-2 mbar	l/s	1700
bei 1 · 10 · mbar	l/s	12 000
dei 1 · 10 · 110ar < 1 · 10⁻⁴ mbar	1/s	12 000

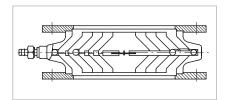
Arbeitsbereich	mbar	< 10-2
Endtotaldruck 1)	mbar	< 5 · 10 ⁻⁷
Max. zulässiger Vorvakuumdruck	mbar	6 · 10 ⁻¹
Treibmittelfüllung, min. / max.	I	5,0 / 8,0
Netzanschluss 50/60 Hz	V	400, 3-Phasen
Heizleistung	kW	10,8
Anzahl der Heizpatronen		9
Anheizzeit	min	< 30
Kühlwasser		
min. Durchflussmenge 2)	l/h	500
Anschluss	G	1/2"
Anzahl der Kühlkreisläufe		
(inklusive Düsenhut-Dampfsperre)		2
Kühlwasseranschluss		
Pumpe	G	1/2"
Düsenhut-Dampfsperre	G	3/8"
Gewicht, ca.	kg	145
Empfohlene Vorvakuum-Pumpen ³⁾		
bei Arbeitsdruck > 10 ⁻⁴ mbar		SV 200 + W 501
bei Arbeitsdruck < 10 ⁻⁴ mbar		TRIVAC D 65 B + W 251

Bestelldaten

LEYBOJET 630

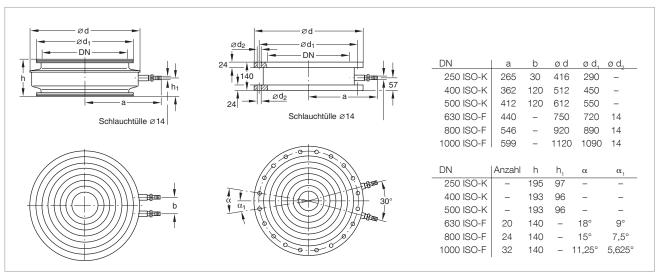
	KatNr.
ÖI-Diffusionspumpe LEYBOJET 630	502 180
Astrotorus-Dampfsperre	227 70
Wasser-Strömungswächter	500006623
Thermo-Schutzschalter	122 84
Kontakt-Thermometer	218 81
Widerstands-Thermometer Pt100 Messfühler	200 02 958
Treibmittel 4)	siehe Katalog-Teil "Öle / Fette / Betriebsmittel LEYBONOL"

¹⁾ Gemessen nach DIN 28 427 mit **LEYBONOL LVO 500** als Treibmittel


 $^{^{2)}}$ Die Kühlwassermenge bezieht sich auf ΔT = 10 °C. Die Austrittstemperatur sollte 30 °C nicht übersteigen

³⁾ Ein- und zweistufige Drehschieber- (TRIVAC; SOGEVAC) aus unserem Vorvakuum-Pumpen-Programm gemeinsam mit Wälzkolben-Vakuumpumpen (RUVAC) in Pumpsystemen

⁴⁾ Das Öl muss separat bestellt werden


Zubehör

Astrotorus-Dampfsperren

Der Kühleinsatz ist bei Astrotorus-Dampfsperren aus Kupfer, das Gehäuse und die Anschlussflansche sind aus Normalstahl gefertigt.

Schnitt einer Astrotorus-Dampfsperre

Maßzeichnung der Astrotorus-Dampfsperren ISO-K (links) und ISO-F (rechts)

Technische Daten

Astrotorus-Dampfsperre

Anbau an Pumpe	DIP	3 000	8 000	12 000
HV-Anschlussflansche	DN	250 ISO-K	400 ISO-K	500 ISO-K
Drosselung des				
Saugvermögens, ca.	%	30	30	30
Leitwert	I/s	3000	9000	12 000
Gewicht	kg	25	30	65

Bestelldaten

Astrotorus-Dampfsperre

	KatNr.	KatNr.	KatNr.
Astrotorus-Dampfsperre			
250 ISO-K	227 50	-	-
400 ISO-K	-	227 60	-
500 ISO-K	-	-	227 65

Technische Daten

Astrotorus-Dampfsperre

Anbau an Pumpe	DIP	20 000	30 000	50 000
HV-Anschlussflansche	DN	630 ISO-F	800 ISO-F	1000 ISO-F
Drosselung des				
Saugvermögens, ca.	%	30	30	30
Leitwert	l/s	18 000	28 000	50 000
Gewicht	kg	120	170	190

Bestelldaten

Astrotorus-Dampfsperre

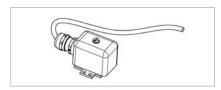
	KatNr.	KatNr.	KatNr.
Astrotorus-Dampfsperre			
630 ISO-F	227 70	_	_
800 ISO-F	-	227 75	_
1000 ISO-F	-	-	227 80

Für passende Ventile fragen Sie uns bitte an.

Temperaturabhängige Schaltelemente zur automatischen Pumpstandsteuerung

Der Betriebszustand der Diffusionspumpen ist abhängig von der Treibmittel-Temperatur im Siedegefäß der Diffusionspumpen. Mitt emperaturabhängigen Schaltelementen - die in das Siedegefäß eingebracht sind - kann der Betriebszustand der Diffusionspumpe überwacht und zur Prozess-Steuerung herangezogen werden.

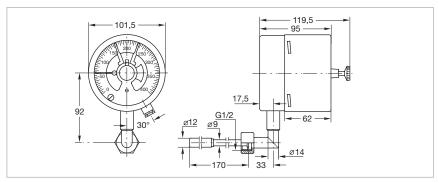
Die Diffusionspumpe benötigt hierzu zwei Schaltpunkte.

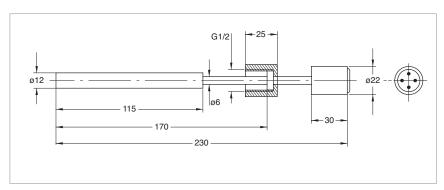

Je nach Pumpentyp sollte der obere Schaltpunkt zwischen 180 und 200 °C, und der untere Schaltpunkt zwischen 90 und 100 °C gewählt werden.

Der obere Schaltpunkt gibt das Signal: Die Diffusionspumpe ist betriebsbereit und löst damit bestimmte Schaltvorgänge aus, z.B. Öffnen des Hochvakuumventils über der Diffusionspumpe.

Der untere Schaltpunkt gibt das Signal: Die Diffusionspumpe ist soweit abgekühlt, dass die Vorvakuumpumpe und das Kühlwasser abgeschaltet werden können.

Thermo-Schutzschalter dienen zur Temperaturkontrolle am Kühlwasser-Kreislauf der Diffusionspumpen. Bei unzulässiger Temperaturerhöhung – z.B. Kühlwasser-Ausfall – wird, bei richtiger Schaltung, die Heizung der Pumpe abgeschaltet (der richtige Netzanschluss ist erforderlich). Störeffekte, wie beim Wasser-Strömungswächter evtl. Kühlwasser-Verschmutzung, treten hier nicht auf. Der Thermo-Schutzschalter wird an eine Kontaktplatte, die an der Kühlschlange des Pumpenkörpers angelötet ist, angeschraubt.


Maximale Schaltstromstärke: 5 A (230 V, 50 Hz).


Thermo-Schutzschalter

Kontakt-Thermometer mit einem Messbereich zwischen 0 und 400 °C. Mittels Schleppzeiger können zwei unabhängige Schaltpunkte eingestellt werden. Aktuelle Öltemperatur und eingestellte Schaltpunkte können vor Ort an der Diffusionspumpe abgelesen werden. Das Kontakt-Thermometer eignet sich nicht für eine Fernanzeige.

Widerstands-Thermometer Pt100 Messfühler. Der Messbereich des Messfühlers ist abhängig von der Ausführung der kundenseitig beizustellenden Auslese-Einheit, in der auch die entsprechenden Schaltpunkte gesetzt werden können. Der Pt100 Messfühler ist für eine Fernanzeige bestens geeignet.

Maßzeichnung des Kontakt-Thermometers

Maßzeichnung des Widerstands-Thermometers Pt100 Messfühler

Bestelldaten

Überwachungsgeräte

	KatNr.
Thermo-Schutzschalter	122 84
Kontakt-Thermometer	218 81
(Messbereich: 0 – 400 °C,	
Belastbarkeit bei 220 V≈:	
250 mA [Ohmsche Last],	
Gewicht: 1,7 kg)	
Widerstands-Thermometer	
Pt100 Messfühler	200 02 958

Überwachungsgeräte

Sicherung gegen Überhitzung

Wasser-Strömungswächter werden in den Kühlwasser-Rücklauf der Treibmittelpumpe eingebaut. Bei zu geringem Kühlwasser-Durchfluss kann je nach Schaltung die Heizung der Treibmittelpumpe abgeschaltet oder eine Warnanlage bzw. eine andere Schaltoder Signalanlage ausgelöst werden.

Messbereich: 1 bis 40 l/min

Innerhalb der angegebenen Grenzen ist die Wasser-Durchflussmenge in weiten Grenzen reproduzierbar einzustellen.

Die Wasser-Strömungswächter können in beliebiger Lage eingebaut werden. Maximale Schaltleistung: 100 VA (230 V).

Sicherung bei Stromausfall

Zur Vermeidung von Beschädigungen der Treibmittelpumpe oder des Treibmittels infolge Stromausfall ist bei Vorpumpen, die kein automatisches Absperrventil besitzen, in der Vorvakuumleitung ein SECUVAC-Ventil vorzusehen (siehe Katalog-Teil "Ventile"). Drehschieber-Vakuumpumpen der TRIVAC B-Serie besitzen serienmäßig ein automatisches Sicherheits-Ventil (Saugstutzen-Ventil).

Sicherung gegen Druckanstieg in der Vorvakuumleitung

Zur Sicherung gegen einen Druckanstieg in der Vorvakuumleitung, der nicht durch Stromausfall verursacht wird, dienen unsere Vakuummeter mit variabel einstellbaren Schaltpunkten (siehe Katalog-Teil "Vakuum messen, steuern, regeln").

Bestelldaten

Wasser-Strömungswächter

	KatNr.
Wasser-Strömungswächter	500006623

Energieregler

Energieregler mit integrierter USB-Schnittstelle

Ethernet-Schnittstelle für die Datenintegration via PLC

Vorteile für den Anwender

- Energieeinsparungen bis zu 30 % (niedrige Kosten und Amortisation in unter drei Jahren)
- Weitere potentielle Einsparungen durch Temperaturverringerung im Bereitschaftsmodus
- Hochqualitative Regelung durch speziell angepasste Software
- Verbesserte Betriebssicherheit und Bedienungskomfort
- Verlängerte Nutzungsdauer für das Öl und die Heizkartuschen

- Leicht und präzise zu bedienen über SPS oder manuelle Eingaben direkt an der Pumpe
- Unkomplizierte Integration der erzeugten Daten in ihrer eigenen Prozesssteuerung oder Datenexport über USB-Anschluss
- Strategische Prozessanalyse und Optimierung durch Auswertung der Energiereglerdaten

Wenn es um den ökonomischen und effizienten Betrieb von Öl-Diffusionspumpen geht, spielt der Stromverbrauch eine zentrale Rolle.

Mit unserem DIP-Energieregler können Sie jetzt Ihren Stromverbrauch drastisch senken – und das ohne jegliche

Leybold Solutions bietet einen einzigartigen Energieregler mit geringeren thermischen Verlusten bei der Regelung der Heizleistung, um so wesentlich Energie einsparen zu können!

Einbußen bei der Leistung!

Technische Daten

Energieregler für

		DIP 20 000	DIP 30 000	DIP 50 000
Saugvermögen für Luft unterhalb 1 · 10⁴ mbar	I/s	20 000	30 000	50 000
Installierte Heizleistung	kW	12	18	24
Anzahl der Heizpatronen		2	6	9
Aufheizzeit	min	< 25	< 30	< 30
Kühlwasser (minimal) für die Pumpe ²⁾	l/h	600	900	1500
für Düsenhut-Dampfsperre	l/h	80	80	150

Bestelldaten

Energieregler für

	DIP 20 000	DIP 30 000	DIP 50 000
	KatNr.	KatNr.	KatNr.
Öl-Diffusionspumpe mit Energieregler			
DIP 20 000	22230V001	_	_
DIP 30 000	_	22235V001	_
DIP 50 000	-	-	22240V001
Retrofit Kit (Nachrüstsatz DIP-Energieregler)			
DIP 20 000	503647V001	_	_
DIP 30 000	-	503648V001	_
DIP 50 000	-	-	503649V001
Full Service Nachrüstsatz 1)			
DIP 20 000	AS8100F	_	_
DIP 30 000	-	AS8101F	_
DIP 50 000	-	-	AS8102F
Mineralöl LVO 500			
11	L50001	L50001	L50001
51	L50005	L50005	L50005
20 I	L50020	L50020	L50020
Mineralöl LVO 510			
11	L51001	L51001	L51001
5 I	L51005	L51005	L51005
Silikonöl LVO 520			
11	L52001	L52001	L52001
5 I	L52005	L52005	L52005
Silikonöl LVO 530			
11	L53001	L53001	L53001

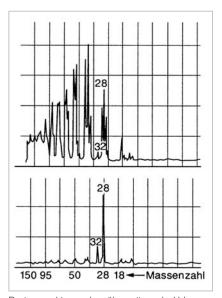
¹⁾ Lieferung, Installation, Inbetriebnahme und Einweisung der Mitarbeiter inklusive

Adsorptionsfallen mit Al-Oxid-Einsatz

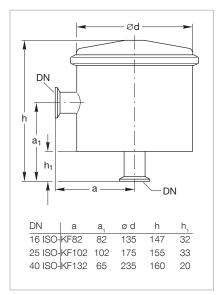
Adsorptionsfallen werden eingesetzt, wenn mit ölgedichteten Vorvakuum-Pumpen ölfreies Vakuum erzeugt werden soll.

Adsorptionsfalle (links) und Einsatz (rechts)

Vorteile für den Anwender


- Verminderung der Ölrückströmung um 99%
- Lange Standzeit
- Hoher Leitwert
- Leichte Austauschbarkeit der Füllung
- Verbesserung des Enddrucks von Vorvakuum-Pumpen um eine Zehnerpotenz
- Gehäuse und Einsatz aus Edelstahl
- Dichtung aus NBR

Typische Anwendungen


- Erzeugung von ölfreiem Vakuum

Lieferumfang

- Mit Einsatz
- Ohne Adsorptionsmittel

Restgasspektrum; oben über rotierender Vakuumpumpe, unten über rotierender Vakuumpumpe mit Adsorptionsfalle

Maßzeichnung der Adsorptionsfalle

Technische Daten

Adsorptionsfallen

		16 ISO-KF	25 ISO-KF	40 ISO-KF
Leitwert bei 10 ⁻² mbar	l·s	4	6	12
Standzeit mit Al-Oxid	Monate	3	3	3
Al-Oxid-Füllung	1	0,5	1,0	2,0
Gewicht, ca.	kg	1,3	1,3	4,0

Bestelldaten

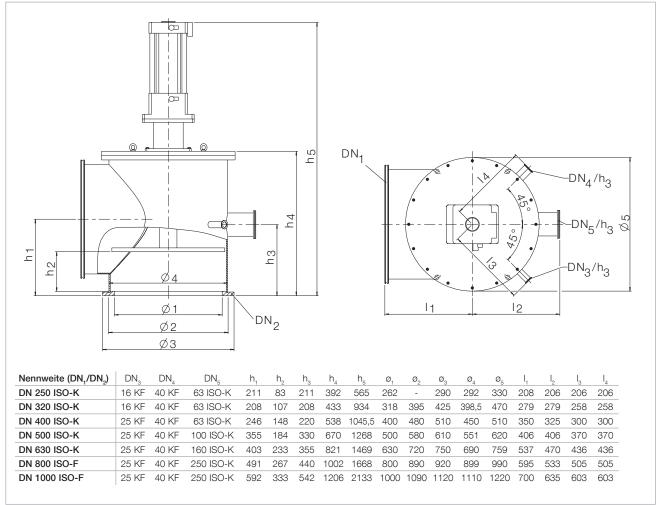
Adsorptionsfallen

16 IS)-KF	25	SO-KF	40	ISO-KF
	<i>-</i>		00 111		

	KatNr.	KatNr.	KatNr.
Adsorptionsfalle	854 14	854 15	854 16
Aktiviertes Aluminiumoxid, abgefüllt in Dose 1,6 I (ca. 1,2 kg)	854 10	854 10	854 10

Notizen Communication of the C	

Eckventile, DN 250 ISO-K bis DN 1000 ISO-F, elektropneumatischer Antrieb



Eckventile, elektropneumatischer Antrieb, Edelstahl, DN 250 ISO-K

Elektropneumatisch betriebene Eckventile finden in automatischen Vakuumanlagen Anwendung, die elektrisch gesteuert werden.

Vorteile für den Anwender

- Pneumatisches oder elektropneumatisches Öffnen
- Kurze Öffnungs- und Schließzeiten
- Optische Stellungsanzeige
- Elektrischer Stellungsgeber
- Serienmäßig mit und ohne Vorsteuerventil
- Schutzart IP 50
- Ventile werden durch mechanische Federkraft geschlossen
- Einbaulage und Strömungsrichtung beliebig

Maßzeichnung (alle Maße in mm)

Technische Daten	DN 250 ISO-K	DN 320 ISO-K	DN 400 ISO-K	DN 500 ISO-K	DN 630 ISO-K	DN 800 ISO-F - F	DN1000 ISO-F
Einbaulage		senk	recht / Pneum	atikzylinder nac	ch oben ausge	richtet	
Leitwert	4.000	6.000	9.000	12.000	20.000	30.000	50.000
Gewicht (kg)	51	110	150	190	270	350	450
Pneumatischer Antrieb			(Ö	Offnen / Schließ	en)		
Druckdifferenz beim Öffnen				Max. 200 mba	ır		
Öffnungszeit 2) (sec)	2	3	5	5	6	8	8
Schließzeit 2) (sec)	2	3	5	5	6	8	8
Lebensdauer (Schaltungen)	> 1 · 105	> 1 · 105	> 1 · 105	> 1 · 105	> 1 · 105	> 5 · 10 ⁴	> 5 · 10 ⁴
Helium-Leckrate		'	<	1 · 10 ⁻⁷ mbar	l/s		
Druckbereich			1 · 10 ⁻⁷ ml	oar bis Atmosp	härendruck		
max. Arbeitstemperatur				60 °C			
Anschlussflansch 1)	DN 250 ISO-K - K	DN 320 ISO-K - F	DN 400 ISO-K - F	DN 500 ISO-K - F	DN 630 ISO-K - F	DN 800 ISO-F – F	DN1000 ISO-F - F
Bypass-Flansch	63 ISO-K	63 ISO-K	63 ISO-K	100 ISO-K	160 ISO-K	250 ISO-K	250 ISO-K
weitere Flansche	NW40 NW16	NW40 NW16	NW40 NW25	NW40 NW25	NW40 NW25	NW40 NW25	NW40 NW25
Werkstoffe				'	'		
Gehäuse und Ventilteller				Edelstahl 1.430)1		
Dichtungen				FKM			
Dichtungsbälge	Edelstahl 1.4373						
Steuerventil							
Nennspannung				24 VDC			
Nennleistung				4,5 W			
Einschaltdauer				100 %			
Endpositionsschalter (max. Ko	ntaktbelastur	ng)					
Nennspannung			5	5 – 240 V AC/D	C		
Strom				100 mA			
Leistung				10 W			
Druckluftversorgung							
Schlauchanschluss				1/4" NPT			
Druckbereich				5 – 7 bar			

¹⁾ je Flansch werden 12 Klammerschrauben zur Befestigung benötigt (Kat.-Nr. 267 10)

²⁾ unter Vakuum, Differenzdruck $\Delta p = 0$ und Druckluft = 6 bar (Überdruck)

Bestelldaten	DN 250 ISO-K	DN 320 ISO-K	DN 400 ISO-K	DN 500 ISO-K	DN 630 ISO-K	DN 800 ISO-F – F	DN1000 ISO-F
	KatNr.	KatNr.	KatNr.	KatNr.	KatNr.	KatNr.	KatNr.
Eckventil, elektropneumatischer Antrieb	504137V002	504138V002	504139V002	504140V002	504141V002	504142V002	504143V002
Dichtungssatz mit Federungskörper	EK121870-00	EK121871-00	EK121872-00	EK121873-00	EK121874-00	EK121875-00	EK121876-00
Dichtungssatz ohne Federungskörper	EK121870-01	EK121871-01	EK121872-01	EK121873-01	EK121874-01	EK121875-01	EK121876-01
Ansteuerventil mit Reedkontakten	EK121870-02	EK121871-02	EK121872-02	EK121873-02	EK121874-02	EK121875-02	EK121876-02

Weitere Ventile finden Sie im Katalogkapitel "Ventile"

Allgemeines

Applikation und Zubehör für Kryopumpen

Kryoquingen	OTHE OTHE OTHE OTHE OTHE OTHE OTHE OTHE
Applikation	/ 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0
Allgemeine Forschung	
Aufdampf-Anlagen	
Schleusenkammern / Loadlock	
Metallisierungs-Anlagen	
Sputter-Anlagen	
Ionenimplanter	
Elektronenstrahl-Schweiß-Anlagen	
Weltraumsimulationskammern	
UHV-Anlagen	
Strahlrohre an Teilchenbeschleuniger	
Vakuumöfen	

Ausführungsvarianten

BasicLine Version ohne Elektronik, mit Temperatursensor	•	•	•	•			
iClassicLine Version mit Elektronik, integrierter Steuerung, Temperaturfühlern und elektrischen Regenerierheizungen	-						
BasicLine LN ₂ Version mit Flüssigstickstoffkühlung, Temperaturfühlern und elektrischen Regenerierheizungen und Übertemperaturschutz							

Zubehör

Spülgas-Option, auf Anfrage	
Kompressor-Einheit COOLPAK 2000 Serie	
Kompressor-Einheit COOLPAK 6000 Serie	
Flexible Druckleitungen	
Gas-Verteiler GD 2 für Mehrfachbetrieb bis zu zwei Kryopumpen	■ ■ ■ *) ■ *)
Gas-Verteiler GD 4 für Mehrfachbetrieb bis zu vier Kryopumpen	
Tieftemperatur-Anzeigegerät MODEL 211 S (nur BasicLine Serie)	

^{[■] =} Nur für Zwei- und Mehrfachbetrieb *) Mehrfachbetrieb nur nach Rücksprache mit dem technischen Support

Applikation und Zubehör für Kryotechnik

1 I							
					stufig	/	/ zweistufig
Kathropte	/c	ORON	olfon		SOLD OF	D 1/25 th 1/25 D 1/20 D	Strong Orthogon
Applikation							
Proben-, Sensoren- und Detektor-Kühlung							
Detektor-Kühlung in der Astronomie							
Proben-Kühlung zur Spektroskopie							
Proben-Kühlung für Anwendungen in der Medizintechnik und F&E							
Kühlung von HTS-Supraleitern							
Kühlung von LTS-Supraleitern				(■)	(🔳)	(■)	
Kühlung in medizinischen Geräten							
Kühlung von Flächen zum Pumpen von Gasen					•		
Kryogene Prozessgasreinigung							
Kondensieren, Resublimieren und Gefrieren von Gasen							

(\blacksquare) = Nur LTS-Supraleiter mit $T_c > 10 \text{ K}$

Zubehör

Kompressor-Einheit COOLPAK 2000 Serie				
Kompressor-Einheit COOLPAK 6000 Serie	(■)		(■)	
Tieftemperatur-Anzeigegerät MODEL 211S				
Temperatur-Messfühler				

(■) = Nur Hoch-T_C-Supraleiter

Umrechnung

Kelvin (K), Celsius (°C), Fahrenheit (°F)

Umrechnung von	Umrechnung in	Formel
Celsius	Fahrenheit	°F = °C · 1,8 + 32
Celsius	Kelvin	$K = {^{\circ}C} + 273,15$
Kelvin	Celsius	°C = K – 273,15
Kelvin	Fahrenheit	°F = K · 1,8 – 459,67
Fahrenheit	Celsius	$^{\circ}C = (^{\circ}F - 32) / 1,8$
Fahrenheit	Kelvin	K = (°F + 459,67) / 1,8

Für den absoluten Nullpunkt gilt: 0 K = -273,15 °C = -459,67 °F.

Kryopumpen

Die Kryopumpe ist eine gasbindende Vakuumpumpe für den Druckbereich von 10⁻³ mbar bis ≤ 10⁻¹¹ mbar. Das Pumpprinzip besteht darin, dass Gase durch Kryokondensation, durch Kryosorption oder Kryotrapping an Kaltflächen im Inneren der Pumpe gebunden werden.

Für die Erzeugung von Hoch- und Ultrahoch-Vakuum müssen die Kaltflächen auf hinreichend tiefe Temperaturen abgekühlt werden. Je nach Art der Kühlung unterscheidet man zwischen Refrigerator-, Bad- und Verdampfer-Kryopumpen. Leybold produziert sowohl refrigeratorgekühlte als auch Flüssig-Stickstoff-unterstützte Kryopumpen.

Vorteile für den Anwender

Vorteile aufgrund des Pumpprinzips

- Hohes effektives Saugvermögen für alle Gase
- Extrem hohes Saugvermögen für H₂O (Wasser) und H₂ (Wasserstoff)

Bei vorgegebenem Durchmesser des Hochvakuum-Anschlussflansches besitzt die Kryopumpe das höchste Saugvermögen aller Hochvakuum-Pumpen.

Vorteile aufgrund von Konstruktions-Merkmalen

Im Gegensatz zu gasfördernden Hochvakuum-Pumpen sind bei Kryopumpen vakuumseitig keine mechanisch bewegten, öl- oder fettgeschmierten Teile vorhanden.

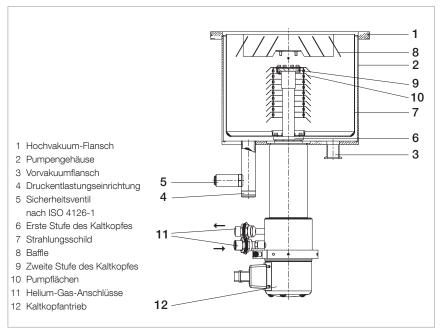
Die folgenden Vorteile sind eine unmittelbare Folge dieses Konstruktionsmerkmales:

- Kohlenwasserstofffreies Vakuum im Druckbereich von 10⁻³ mbar bis ≤ 10⁻¹¹ mbar
- Unempfindlich gegen mechanische Störeinflüsse wie Prozess-Partikel oder externe Vibrationen

Weitere Vorteile

- Kompaktere Bauweise als vergleichbare Pumpsysteme mit Saugvermögen > 1500 l/s
- Erfordernis der Vorvakuum-Pumpe nur in der Startphase und zur "Regeneration" der Kryopumpe
- Bedienungsfreundliche Prozesskontrolle und -steuerung
- Günstiges Preis-Leistungsverhältnis und hohe Wirtschaftlichkeit, besonders bei hohen Saugvermögen

Die Kryopumpen werden mit den bewährten zweistufigen Leybold Refrigeratoren der Baureihe COOLPOWER (Gifford-McMahon-Prinzip) betrieben.


Der Aufbau einer Refrigerator-Kryopumpe der Baureihe COOLVAC ist in der Abbildung schematisch dargestellt:

Mit der ersten Stufe des Kaltkopfes (6) werden der Strahlungsschild (7) und das Baffle (8) der Pumpe gekühlt. Diese sind aus Kupfer mit hoher Wärmeleitfähigkeit gefertigt, damit die Kälteleistung des Refrigerators optimal in Pumpleistung umgesetzt wird.

Die Betriebstemperaturen liegen je nach Pumpentyp und Betriebsbedingungen an diesen Flächen zwischen 45 K und 80 K. Es werden hauptsächlich Wasser aber auch Kohlenstoffoxide gepumpt.

Mit der zweiten Stufe des Kaltkopfes (9) werden die Pumpflächen (10) gekühlt. Diese sind ebenfalls aus Kupfer mit hoher Wärmeleitfähigkeit gefertigt und an der zweiten Stufe des Kaltkopfes thermisch kontaktiert. Die Temperaturen liegen je nach Betriebsbedingungen im Bereich zwischen 10 K und 20 K. Hier findet die Kryo-Kondensation von N₂ (Stickstoff), O₂ (Sauerstoff) und Ar (Argon) statt.

Der innere Teil der Pumpfläche ist zusätzlich mit Aktivkohle belegt. Dort findet die Adsorption (Kryosorption) von H₂ (Wasserstoff), Ne (Neon) und He (Helium) statt.

Refrigerator-Kryopumpe COOLVAC

Die Kryopumpen der Baureihe COOLVAC sind mit allen sicherheitsrelevanten Komponenten ausgestattet, insbesondere mit einer Druckentlastungseinrichtung und Sicherheitsventil mit Flanschansatz (4, 5). Diese ist zusätzlich mit einem Flansch DN 40 ISO-KF zum problemlosen Anschluss einer Gasabführungsleitung versehen.

Das Pumpengehäuse ist aus hochwertigem, rostfreiem Edelstahl hergestellt.

Für den Betrieb der Kaltköpfe der Baureihe COOLPOWER, die in den Kryopumpen der Baureihe COOLVAC eingebaut sind, sind die Heliumkompressoren der Baureihe COOLPAK notwendig.

Regenerieren von Kryopumpen

Ein für den Betrieb von Kryopumpen wesentlicher Aspekt ist das Regenerieren. Da die Kryopumpe eine gasbindende Vakuumpumpe ist, müssen spätestens bei Erreichen der Kapazitätsgrenze die gepumpten Gase aus der Pumpe entfernt werden. Das sogenannte "Regenerieren" erfolgt durch Abschalten der Kompressor-Einheit und Aufwärmen der kalten Flächen auf Raumtemperatur. Die gepumpten Gase werden mit einer Vorvakuum-Pumpe abgepumpt. Bei genügend niedrigem Vakuum kann die Kryopumpe wieder eingekühlt werden. Nach Erreichen der Betriebstemperaturen ist der Regenerationsvorgang abgeschlossen.

Zum Regenerieren stehen die folgenden unterschiedlichen Verfahren zur Verfügung:

- Aufwärmen durch Eigenerwärmung nach Abschaltung des Refrigerators und anschließendes Wiedereinkühlen
- Aufwärmen mittels Unterstützung eines trockenen, warmen Inertgases
- Aufwärmen mittels elektrischer Heizer an den kalten Flächen

Diese Verfahren können miteinander kombiniert werden.

Kryopumpe mit geregeltem Regenerier-System der Baureihe iClassicLine

Die Kryopumpen der Baureihe *iClassicLine (iCL)* werden mittels elektrischer Heizer an den beiden Kaltkopfstufen schrittweise bis auf Raumtemperatur erwärmt. Druck, Temperatur und Heizleistung werden in der Kryopumpe detailliert überwacht.

Während des Prozesses werden die Gase in der folgenden Reihenfolge freigesetzt:

- Gase, die an den Pumpflächen adsorbiert sind (z.B. Wasserstoff, Helium, Neon),
- Gase, die an den Pumpflächen kondensiert sind (z.B. Stickstoff, Sauerstoff, Argon),
- Gase und Dämpfe, die am Baffle und Strahlungsschild kondensiert sind (z.B. Wasser).

Der Vorteil dieses Regenerierverfahrens von Leybold ist, dass beim Regenerieren von inerten, reaktionsträgen Gasen kein zusätzliches Spülgas benötigt wird.

Zu sicherheitsrelevanten Fragestellungen für kundenspezifische Prozessgase steht Ihnen unser Applikationssupport zur Verfügung.

Das für das automatische Regenerieren notwendige Zubehör wie Temperatursensoren an beiden Kaltkopfstufen, Druckmessröhre, Vorvakuumventil und elektrische Steuerung sind bei der Baureihe *iClassicLine* Bestandteil der Kryopumpe. Weiteres Zubehör erhalten Sie auf Anfrage.

Kryopumpe ohne geregeltes Regenerier-System der Baureihe BasicLine

Bei den Kryopumpen der Baureihe BasicLine (BL) erfolgt das Regenerieren manuell in zwei Teilschritten:

- Abschaltung des Refrigeratorsystems und Erreichen von Raumtemperatur abwarten (Die Temperatur kann kundenseitig über die eingebaute Si-Diode ausgelesen werden.)
- Wiedereinkühlung nach Erreichen genügend niedrigen Druckes in der Kryopumpe

Weitere Komponenten wie z.B. Temperaturanzeigegerät, Druckmessröhre und Vorvakuumventil gehören nicht zum Lieferumfang der BasicLine-Kryopumpen, sind auf Anfrage als Zubehör erhältlich. Leybold berät Sie für eine optimale Zusammenstellung der Komponenten für Ihre Applikation.

Die Kryopumpen der Baureihen BasicLine als auch iClassicLine sind in den Saugvermögensklassen 1500 l/s bis 60000 l/s erhältlich.

Mehrfach-Betrieb von Refrigerator-Kryopumpen

Mit den leistungsstarken Leybold Kompressor-Einheiten der Baureihe COOLPAK 6000 H eröffnet sich die Möglichkeit für den gleichzeitigen Betrieb von bis zu drei Refrigerator-Kryopumpen.

Vorteile für den Anwender

- Deutlich reduzierte Investitions- und Betriebskosten
- Geringer Platzbedarf

Kaltköpfe

Ein Refrigerator ist eine Kältemaschine, die zur Erzeugung kryogener Temperaturen ($T \le 120 \text{ K}$) in einem thermodynamischen Kreisprozess (Carnot) arbeitet.

Zur Kühlung von Kryopumpen und kryogenen Applikationen hat sich der Refrigerator nach dem Gifford/ McMahon-Verfahren durchgesetzt. Ausschließlich diese werden von Leybold hergestellt und verwendet.

Die Kaltköpfe bestehen im Wesentlichen aus drei Baugruppen:

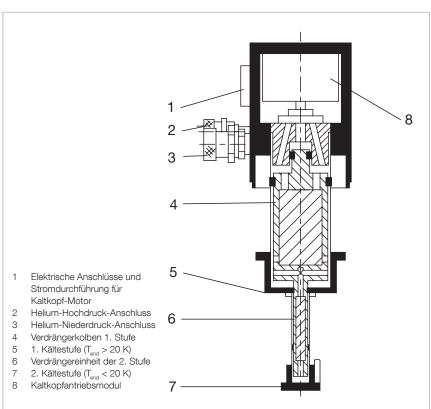
- Antriebsmodul
- Verdrängereinheit
- Kaltkopfstufe(n)

Zum Betrieb der Kaltköpfe der Baureihe COOLPOWER werden die Heliumkompressoren der Baureihe COOLPAK eingesetzt.

Neben den Standardprodukten bietet Leybold diese Kaltköpfe als auch Kryopumpen in Sonder-Ausführung nach Kundenwunsch an.

Gifford/McMahon-Refrigeratoren

Vorteile für den Anwender


- Keine flüssigen Kältemittel (LHe / LN₂) erforderlich
- Einfache Bedienung

Prozesskontroll- und Temperatur-Regelung über Computer in einfacher Art und Weise möglich

- Räumlich getrennter Aufbau von Kaltkopf und Kompressor-Einheit
- lageunabhängiger Einsatz des Kaltkopfes möglich
- Hohe Zuverlässigkeit
- Lange Wartungsintervalle

Typische Anwendungen

- Kühlung von
 - Pumpflächen in Kryopumpen zur Erzeugung von Hoch- und Ultrahochvakua
 - supraleitenden Magneten; z.B. bei der Magnet-Resonanz-Tomographie in der Medizintechnik
 - Proben für spektroskopische Untersuchungen in der Festkörperund Oberflächenphysik
 - Hoch- und Tieftemperatur-Supraleitern
 - Halbleiterbauelementen
 - Infrarot- und Gamma-Detektoren
- Rekondensation von Flüssigkeiten und Reinigung von Gasen
- Kalibrierung von Messfühlern

Zweistufiger Gifford/McMahon-Kaltkopf (schematisch)

Kaltköpfe der Reihe COOLPOWER

Das Standard-Lieferprogramm von ein- und zweistufigen Kaltköpfen ist auf ein breites Anwendungsspektrum abgestimmt.

So bietet Leybold Refrigeratoren mit verfügbaren Kälteleistungen bei einstufigen Systemen von 20 W bis 250 W bei 80 K.

Bei zweistufigen Systemen liegen die Kälteleistungen der zweiten Stufe zwischen 5 W und 20 W bei 20 K.

Pneumatisch angetriebene Kaltköpfe

Vorteile

- Einfacher Aufbau

Die pneumatisch betriebenen Verdrängereinheiten der Leybold Vakuum-Kaltköpfe benötigen nur zwei weitere mechanisch bewegte Teile, ein rotierendes Steuerventil und den dazu gehörigen Synchronmotor.

Einfache und schnelle Wartung
Aufgrund ihres einfachen Aufbaus
sind diese Kaltköpfe einfach und
schnell zu warten. Die Wartung kann
am Einsatzort der Anwendung ohne
Beeinflussung der umgebenden
Infrastruktur erfolgen, insbesondere
ohne das Vakuum der Kammer
brechen zu müssen.

Mechanisch angetriebene Kaltköpfe

Vorteile durch Vibrationsarmut

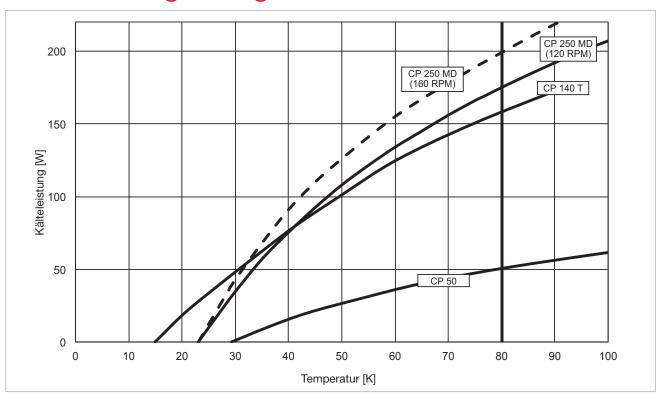
Bei diesen Kaltköpfen erfolgt die Bewegung der Verdrängereinheit zwangsgesteuert über einen Kulissenantrieb, der zu geringen Vibrationen führt

Auch hier kann die Wartung am Einsatzort der Anwendung ohne Beeinflussung der umgebenden Infrastruktur, insbesondere ohne Brechen des Vakuums der Kammer durch den Servicetechniker erfolgen.

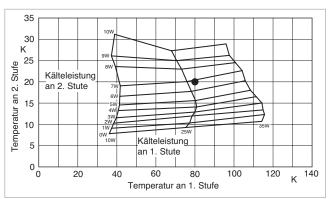
Vorteile durch hohe Zuverlässigkeit

Leybold-Kaltköpfe kommen in Anwendungen mit besonders hohen Anforderungen an die Zuverlässigkeit wie z. B. der Magnet-Resonanz-Tomographie in der Medizintechnik, der Kühlung von Tieftemperatur- und Hochtemperatursupraleitern und der Kühlung von Detektoren in Teleskopen für die Astronomie zum Einsatz.

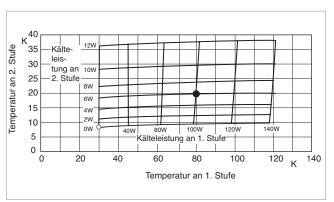
Kälteistungsdiagramme (siehe nächste Katalogseite)

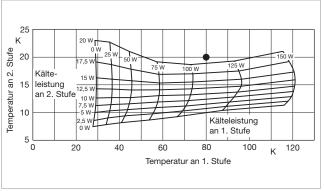

Auf der folgenden Katalogseite finden Sie die Kälteleistungsdiagramme unserer einstufigen und zweistufigen Kaltköpfe COOLPOWER.

Am Beispiel des Refrigeratorkaltkopfs COOLPOWER 5/100 erläutern wir im Folgenden die Interpretation der Diagramme für unsere zweistufigen Kaltköpfe (siehe zugehöriges Diagramm auf der nächsten Seite):


Werden Wärmeleistungen an der 1. Stufe von 100 W und simultan an der 2. Stufe von 6 W angelegt, so ergeben sich aus dem Schnittpunkt (•) 100 W / 6 W der beiden Linien konstanter Kälteleistung 1. Stufe / 2. Stufe die zu erwartenden Temperaturen für die 1. Kaltkopf-Stufe bzw. für die 2. Kaltkopf-Stufe von 80 K bzw. 20 K.

Ohne thermische Belastung (linke unterer Schnittpunkt (\circ) 0W / 0W des Kennlinienfelds) ergeben sich stattdessen Endtemperaturen von < 30 K bzw. von < 10 K an der 1. Stufe bzw. an der 2. Stufe.


Kälteleistungs-Diagramme


Typische Kälteleistung der einstufigen Kaltköpfe COOLPOWER 50, COOLPOWER 140 T und COOLPOWER 250 MD

Typische Kälteleistung des Kaltkopfes COOLPOWER 7/25

Typische Kälteleistung des Kaltkopfes COOLPOWER 5/100

Typische Kälteleistung des Kaltkopfes COOLPOWER 10 MD

Die angegebenen Kälteleistungen gelten für vertikalen Betrieb mit kaltem Ende nach unten.

Kompressor-Einheiten

Für den Einzel- und für den Mehrfach-Betrieb der Kaltköpfe der Reihe COOLPOWER sowie der Kryopumpen der Reihe COOLVAC stehen die Kompressor-Einheiten der Familie COOLPAK 2000 und COOLPAK 6000 H zur Verfügung. Die Kompressoren zeichnen sich durch eine hohe Zuverlässigkeit und Service-Freundlichkeit aus. Das Wartungsintervall beträgt je nach Applikation bis zu 30000 Stunden. Die Vibrations- und Geräuscharmut wird durch die ausschließliche Verwendung von ScrollVerdichtern sowie die Verwendung besonders ausgewählter Komponenten erreicht.

Den Ein- und Mehrfach-Betrieb von Kaltköpfen und Kryopumpen entnehmen Sie der folgenden Tabelle.

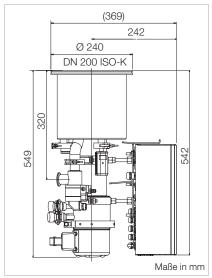
Für den Betrieb von

Kompressor-Einheit	Kaltköpfen	Kryopumpen
COOLPAK 2000/2200	1 x COOLPOWER 50 1 x COOLPOWER 7/25	1 x COOLVAC 1500/2000/3000
COOLPAK 6000 HD	2 x COOLPOWER 50 2 x COOLPOWER 7/25	2 x COOLVAC 1500 BL/2000 BL/3000 BL 2 x COOLVAC 5000 BL/ 10000 BL *)
COOLPAK 6000 H/6200 H	1 x COOLPOWER 140 T 1 x COOLPOWER 5/100	bis zu 3 x COOLVAC 1500 iCL /2000 iCL bis zu 2 x COOLVAC 3000 iCL bis zu 2 x COOLVAC 5000 iCL/10000 iCL *) 1 x COOLVAC 5000 BL/10000 BL
COOLPAK 6000 HMD/6200 HMD	1 x COOLPOWER 250 MD 1 x COOLPOWER 10 MD	1 x COOLVAC 30000 BL LN ₂ 1 x COOLVAC 60000 BL LN ₂

^{*)} nur nach Rücksprache mit unserem technischen Support

Produkte Kryopumpen

Kryopumpen mit vollautomatischer Steuerung, iClassicLine COOLVAC 1500 iCL



Vorteile für den Anwender

- Kohlenwasserstofffreies Hochvakuum
- Hohe Kapazität für Argon und Wasserstoff
- Hoher Crossover-Wert
- Einfache Bedienung
- Problemlose Integration in komplexe Hochvakuum-Systeme
- Vollautomatisches Regenerieren durch integrierte Steuerung COOL.DRIVE ¹⁾
- Einfacher Service vor Ort ohne Demontage der Pumpe und Rekonditionierung der Vakuumanlage möglich.

Typische Anwendungen

- Aufdampf-Anlagen
- Sputter-Anlagen
- Ionen-Implantations-Anlagen
- Optische Beschichtungs-Anlagen
- Metallisierungs-Anlagen

Maßzeichnung der COOLVAC 1500 iCL (DN 200 ISO-K)

Technische Daten

COOLVAC

1500 iCL

		1500 ICL
Hochvakuum (HV)-Flansch	n DN	200 ISO-K / 200 CF / 6" ANSI
Vorvakuum-Flansch 2)	DN	25 ISO-KF
Flansch zum Anschluss fü	r Messröhre 3) DN	16 ISO-KF
Flansch für Elektroanschlu	iss DN	16 ISO-KF
Überdruckentlastungseinric anschluss für Gasabführung	•	40 ISO-KF
4-polige Stromdurchführun für Si-Diode auf Flansch	ng DN	16 ISO-KF
Heizungen 1. Stufe 2. Stufe	W V AC W	160 42 90
Temperatur-Messfühler 1. Stufe 2. Stufe	V AC	42 PT 100 Si-Diode
Eingebauter Kaltkopf	COOLPOWER	7/25
Gewicht	kg	25
Abkühlzeit bis T ₂ = 20 K	min	60
Crossover-Wert	mbar · I	210
Saugvermögen H ₂ O Ar / N ₂ H ₂	l/s l/s l/s	4600 ± 10% 1200 / 1500 ± 10% 2500 ± 10%
Kapazität Ar / N_2 H_2 bei 10^{-6} mbar	bar · I bar · I	1000 / 1000 15 ⁴⁾
Max. Saugleistung Ar / N ₂ H ₂	mbar · l/s mbar · l/s	12 / 12 6 ⁴⁾
Helium-Anschlüsse (Selbstdichtende Verschra Außengewinde Typ 5400-S	-	1/2"

- Für den automatischen Betrieb notwendiges Zubehör wie elektrische Regenerierheizungen, Vorvakuumventil DN 25 ISO-KF und Vakuummessröhre DN 16 ISO-KF sind bereits im Lieferumfang enthalten und mit der integrierten Steuerung COOL.DRIVE verbunden.
- 2) Elektropneumatisches Eckventil im Lieferumfang enthalten.
- 3) Vakuummessröhre im Lieferumfang enthalten.
- 4) Die maximale Saugleistung für H₂ (Wasserstoff) gilt nur für eine regenerierte Kryopumpe unter kurzzeitiger Last. Im Dauerbetrieb ist mit einer Absenkung sowohl der Saugleistung als auch der Kapazität zu rechnen.

Bestelldaten

COOLVAC 1500 iCL

	Einfach Europa	-Betrieb USA/Japan	Zweifach-Betrieb Europa* USA/Japan**		Mehrfac Europa*	h-Betrieb USA/Japan**
	· ·	Nr.		Nr.		Nr.
COOLVAC 1500 iCL						
DN 200 CF	84420	1V0002	844201V	0002 (2v)	844201V	0002 (3x)
DN 6" ANSI		1V0002		844201V0002 (2x) 844201V0004 (2x)		0002 (0x)
DN 200 ISO-K		1V0004		0004 (2x) 0006 (2x)		` '
		1 40000	0442011	0006 (ZX)	0442018	0006 (3x)
Kompressoren, Druckleitungen und Steue	rkabei					
Kompressor	0.400001/0000					
CP 2000	840000V2000	-	-	-	-	-
CP 2200	-	840000V2200	-	-	-	-
CP 6000 H	-	-	840000V6001	-	840000V6001	-
CP 6200 H	-	-	-	840000V6201	-	840000V6201
Stromversorgungskabel für Kompressor		-	Siehe Be	estelldaten der	Kompressor-I	Einheiten
Satz flexible Druckleitungen						
FL 4.5 (1/2", 1/2")	892	2 87	892 8	37 (2x)	892 8	37 (3x)
oder FL 9.0 (1/2", 1/2")	892	2 88	892 8	88 (2x)	892 8	88 (3x)
oder FL 18.0 HP (1/2") + FL 18.0 LP (1/2")	840203	+ 840204	840203 (2x)	+ 840204 (2x)	840203 (3x)	+ 840204 (3x)
Gasverteiler (jeweils 1 Stück)						
GD 2		-	840 2	53 (2x)		_
GD 4		_	_		840 254 (2x)	
Steuerkabel zur Kompressoreinheit 1)						
COOLPAK Steuerkabel, 5 m	84423 ⁻	1V4005	844231V	4005 (2x)	844231V4005 (3x)	
oder COOLPAK Steuerkabel, 10 m	84423 ⁻	1V4010	844231V	4010 (2x)	844231V4010 (3x)	
oder COOLPAK Steuerkabel, 20 m	84423	1V4020		4020 (2x)	844231V4020 (3	
COOLPAK Adapter für Mehrfachsteuerung		_		1V5003		1V5003
Optionale Elektroniken, Kabel und Geräte						
CRYOVISION Steuer- und Anzeigeeinheit	84423 ⁻	1V0002	84423 ⁻	1V0002	84423	1V0002
CRYOVISION Steuerkabel						
CRYOVISION Steuerkabel, 5 m	84423	1V2005	84423 ⁻	1V2005	84423	1V2005
oder CRYOVISION Steuerkabel, 10 m		1V2010		1V2010		1V2010
oder CRYOVISION Steuerkabel, 20 m		1V2020		1V2020		1V2020
Netzwerksteuerkabel zur Verbindung zwischen den Pumpen	01120		01120		01120	
CRYOVISION / Netzwerk Steuerkabel. 5 m		_	84423	1V2005	844231V	2005 (2x)
oder CRYOVISION / Netzwerk Steuerkabel, 10 m		_		1V2000		2010 (2x)
oder CRYOVISION / Netzwerk Steuerkabel, 10 m		_		1 V 2010 1 V 2020		2020 (2x)
Optionales Interface-Modul			120	· 	22014	()
COOLVAC ProfiBus-Modul ProfiBus-RS232-Konverter für COOL.DRIVE und CRYOVISION						
entweder COOLVAC ProfiBus-Module angeschlossen an COOL.DRIVE-Steuer- und Anzeige-Elektronik jeder Kryopumpe (In diesem Falle können CRYOVISION und Netzwerk-Steuerkabel entfallen.)	8440	00 V 1	844000)V1 (2x)	844000)V1 (3x)
oder COOLVAC ProfiBus-Modul angeschlossen am CRYOVISION ²⁾	8440	00V1	8440	00V1	8440	00V1

 $\label{thm:continuity} \mbox{Die Anordnung der Komponenten ist im Abschnitt "Zubeh\"{o}r" unter Absatz "COOLVAC iClassicLine, System-Komponenten" dargestellt.}$

^{* 400} V, 50 Hz / 470 V, 60 Hz

^{** 200} V, 50 Hz / 200 V, 230 V, 60 Hz

¹⁾ Die Länge der Steuerkabel sollte zur Länge der flexiblen Druckleitungen passend gewählt werden. 2) Mit reduzierter Kommunikationsgeschwindigkeit zur einzelnen Kryopumpe bei Mehrfachbetrieb.

COOLVAC 2000 ICL COOLVAC 3000 ICL

Vorteile für den Anwender

- Kohlenwasserstofffreies Hochvakuum
- Hohe Kapazität für Argon und Wasserstoff
- Hoher Crossover-Wert
- Einfache Bedienung
- Problemlose Integration in komplexe Hochvakuum-Systeme
- Vollautomatisches Regenerieren durch integrierte Steuerung COOL.DRIVE 1)
- Einfacher Service vor Ort ohne Demontage der Pumpe und Rekonditionierung der Vakuumanlage möglich

- Aufdampf-Anlagen
- Sputter-Anlagen
- Ionen-Implantations-Anlagen

Typische Anwendungen

- Optische Beschichtungs-Anlagen
- Metallisierungs-Anlagen

- Aufdampf-Anlagen
- Sputter-Anlagen
- Ionen-Implantations-Anlagen

Typische Anwendungen

Vorteile für den Anwender

Hoher Crossover-Wert

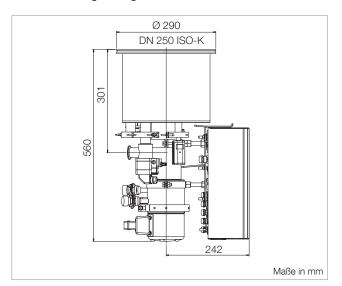
Steuerung COOL.DRIVE 1)

Einfache Bedienung

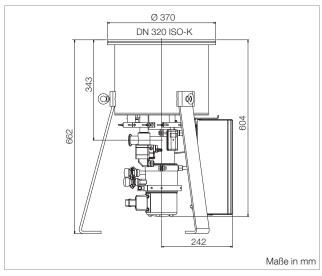
Systeme

Kohlenwasserstofffreies Hochvakuum

Hohe Kapazität für Argon und Wasserstoff


Problemlose Integration in komplexe Hochvakuum-

Vollautomatisches Regenerieren durch integrierte


Einfacher Service vor Ort ohne Demontage der Pumpe

und Rekonditionierung der Vakuumanlage möglich

- Optische Beschichtungs-Anlagen
- Metallisierungs-Anlagen

Maßzeichnung der COOLVAC 2000 iCL (DN 250 ISO-K)

Maßzeichnung der COOLVAC 3000 iCL (DN 320 ISO-K)

Technische Daten COOLVAC

	2000 iCL	3000 iCL
Hochvakuum (HV)-Flansch DN	250 ISO-K / 250 CF / 8" ANSI	320 ISO-K / 10" ANSI
Vorvakuum-Flansch 2) DN	25 ISO-KF	25 ISO-KF
Flansch zum Anschluss für Messröhre 3 DN	16 ISO-KF	16 ISO-KF
Flansch für Elektroanschluss DN	16 CF	16 CF
Überdruckentlastungseinrichtung mit Flansch- anschluss für Gasabführungsleitung DN	40 ISO-KF	40 ISO-KF
4-polige Stromdurchführung für Si-Diode auf Flansch DN	16 ISO-KF	16 ISO-KF
Heizungen 1. Stufe W V AC	160 42	160 42
2. Stufe W V AC	90 42	90 42
Temperatur-Messfühler 1. Stufe 2. Stufe	PT 100 Si-Diode	PT 100 Si-Diode
Eingebauter Kaltkopf COOLPOWER	7/25	7/25
Gewicht kg	29	46
Abkühlzeit bis $T_2 = 20 \text{ K}$ min	70	120
Crossover-Wert mbar · I	250	500
$\begin{array}{lll} \text{Saugverm\"{o}gen} & & & \text{I/s} \\ \text{H}_2\text{O} & & \text{I/s} \\ \text{Ar / N}_2 & & \text{I/s} \\ \text{H}_2 & & \text{I/s} \end{array}$	7000 1600 / 2100 3200	10500 2500 / 3000 6000
Kapazität Ar / N ₂ bar · I H ₂ bei 10 ⁻⁶ mbar bar · I	1600 / 1600 15 ⁴⁾	2500 / 2500 28 ⁴⁾
$\begin{array}{ll} \text{Max. Saugleistung} \\ \text{Ar / N}_2 & \text{mbar} \cdot \text{I/s} \\ \text{H}_2 & \text{mbar} \cdot \text{I/s} \end{array}$	12 / 12 6 ⁴⁾	15 / 15 10 ⁴⁾
Helium-Anschlüsse DN (Selbstdichtende Verschraubungen: Außengewinde Typ 5400-S2-8)	1/2"	1/2"

¹⁾ Für den automatischen Betrieb notwendiges Zubehör wie elektrische Regenerierheizungen, Vorvakuumventil DN 25 ISO-KF und Vakuummessröhre DN 16 ISO-KF sind bereits im Lieferumfang enthalten und mit der integrierten Steuerung COOL.DRIVE verbunden.

²⁾ Elektropneumatisches Eckventil im Lieferumfang enthalten.

³⁾ Vakuummessröhre im Lieferumfang enthalten.

⁴⁾ Die maximale Saugleistung für H₂ (Wasserstoff) gilt nur für eine regenerierte Kryopumpe unter kurzzeitiger Last. Im Dauerbetrieb ist mit einer Absenkung sowohl der Saugleistung als auch der Kapazität zu rechnen.

Bestelldaten

COOLVAC 2000 iCL

	Einfach Europa	-Betrieb USA/Japan	Zweifach-Betrieb Europa* USA/Japan**		Mehrfach-Betrieb Europa* USA/Japan**		
	Kat	Nr.	KatNr.		Kat	Nr.	
COOLVAC 2000 iCL							
DN 250 CF	84425	1V0002	844251V	0002 (2x)	844251V	0002 (3x)	
DN 8" ANSI		1V0004		844251V0004 (2x)		0004 (3x)	
DN 250 ISO-K	844251V0006 844251V0006 (2x)			0006 (3x)			
Kompressoren, Druckleitungen und Steue		110000	0112011	0000 (EX)	0112011	0000 (0x)	
Kompressor	TRABOI						
CP 2000	840000V2000	_	_	_	_	_	
CP 2200	_	840000V2200	_	_	_	_	
CP 6000 H	_	_	840000V6001	_	840000V6001	_	
CP 6200 H	_	_	_	840000V6201	_	840000V6201	
			Sioho P		r Kompressor-I		
Stromversorgungskabel für Kompressor Satz flexible Druckleitungen			Sielle Di	estelluatell del	Kompressor-i	-iiiiieiteii	
FL 4.5 (1/2", 1/2")	803	2 87	802 8	37 (2x)	802 9	37 (3x)	
		2 88		88 (2x)		88 (3x)	
oder FL 9.0 (1/2", 1/2")							
oder FL 18.0 HP (1/2") + FL 18.0 LP (1/2")	640203	+ 840204	040203 (ZX)	+ 840204 (2x)	840203 (3x) + 840204		
Gasverteiler (jeweils 1 Stück)			040.0	FO (O.)			
GD 2	•	-	840 2	53 (2x)	840 254 (2x)		
GD 4	•	-	•	-	840 2	54 (2x)	
Steuerkabel zur Kompressoreinheit 1)							
COOLPAK Steuerkabel, 5 m		1V4005		4005 (2x)		4005 (3x)	
oder COOLPAK Steuerkabel, 10 m		1V4010		4010 (2x)	844231V4010 (3x)		
oder COOLPAK Steuerkabel, 20 m	84423	1V4020		4020 (2x)	844231V4020 (3x)		
COOLPAK Adapter für Mehrfachsteuerung	-	-	84423	1V5003	844231V5003		
Optionale Elektroniken, Kabel und Geräte							
CRYOVISION Steuer- und Anzeigeeinheit	84423	1V0002	84423	1V0002	84423	1V0002	
CRYOVISION Steuerkabel							
CRYOVISION Steuerkabel, 5 m	84423 ⁻	1V2005	84423	1V2005	84423	1V2005	
oder CRYOVISION Steuerkabel, 10 m	84423 ⁻	1V2010	84423	1V2010	844231V2010		
oder CRYOVISION Steuerkabel, 20 m	84423	1V2020	84423	1V2020	844231V2020		
Netzwerksteuerkabel zur Verbindung zwischen den Pumpen							
CRYOVISION / Netzwerk Steuerkabel, 5 m	-	-	84423	1V2005	844231V	2005 (2x)	
oder CRYOVISION / Netzwerk Steuerkabel, 10 m		_	84423	1V2010	844231V	2010 (2x)	
oder CRYOVISION / Netzwerk Steuerkabel, 20 m		_	84423	1V2020	844231V	2020 (2x)	
Optionales Interface-Modul			J				
COOLVAC ProfiBus-Modul ProfiBus-RS232-Konverter für COOL.DRIVE und CRYOVISION							
entweder COOLVAC ProfiBus-Module angeschlossen an COOL.DRIVE-Steuer- und Anzeige-Elektronik jeder Kryopumpe (In diesem Falle können CRYOVISION und Netzwerk-Steuerkabel entfallen.)	8440	000 V 1	844000)V1 (2x)	844000)V1 (3x)	
oder COOLVAC ProfiBus-Modul angeschlossen am CRYOVISION ²⁾	8440	000V1	8440	000V1	8440	000V1	

 $\label{thm:continuity} \mbox{Die Anordnung der Komponenten ist im Abschnitt "Zubeh\"{o}r" unter Absatz "COOLVAC i Classic Line, System-Komponenten" dargestellt.}$

^{* 400} V, 50 Hz / 470 V, 60 Hz

^{** 200} V, 50 Hz / 200 V, 230 V, 60 Hz

¹⁾ Die Länge der Steuerkabel sollte zur Länge der flexiblen Druckleitungen passend gewählt werden. 2) Mit reduzierter Kommunikationsgeschwindigkeit zur einzelnen Kryopumpe bei Mehrfachbetrieb.

Bestelldaten

COOLVAC 3000 iCL

	Einfach Europa	-Betrieb USA/Japan	Zweifach Europa*	-Betrieb USA/Japan**
	Kat	Nr.	Kat.	-Nr.
COOLVAC 3000 iCL				
DN 10" ANSI	844321V0004 844321V000		0004 (2x)	
DN 320 ISO-K		1V0006	844321V0006 (2x)	
Kompressoren, Druckleitungen und Steue		140000	01102111	5000 (EX)
Kompressor	rabei			
CP 2000	840000V2000	_	_	_
		840000V2200	_	
CP 2200 CP 6000 H	_		840000V6001	<u>-</u>
	_	_	640000¥6001	940000\(\)600-
CP 6200 H	_	_	Ciales Destallates	840000V620
Stromversorgungskabel für Kompressor	-	-	Siehe Bestelldaten Einhe	•
Satz flexible Druckleitungen				-
FL 4.5 (1/2", 1/2")	892	2 87	892 8	7 (2x)
oder FL 9.0 (1/2", 1/2")	892	2 88	892 8	8 (2x)
oder FL 18.0 HP (1/2") + FL 18.0 LP (1/2")	840203 -	+ 840204	840203 (2x) +	840204 (2x)
Gasverteiler (jeweils 1 Stück)				
GD 2	-	_	840 253 (2x)	
Steuerkabel zur Kompressoreinheit 1)				
COOLPAK Steuerkabel, 5 m	84423 ⁻	1V4005	844231V4005 (2x)	
oder COOLPAK Steuerkabel, 10 m	84423 ⁻	1V4010	844231V4010 (2x)	
oder COOLPAK Steuerkabel, 20 m	84423 ⁻	1V4020	844231V4020 (2x)	
COOLPAK Adapter für Mehrfachsteuerung	_		844231V5003	
Optionale Elektroniken, Kabel und Geräte	l			
CRYOVISION Steuer- und Anzeigeeinheit	84423	1V0002	844231	V0002
CRYOVISION Steuerkabel	011			
CRYOVISION Steuerkabel, 5 m	84423 ⁻	1V2005	844231	V2005
oder CRYOVISION Steuerkabel, 10 m	84423 ⁻	1V2010	844231V2010	
oder CRYOVISION Steuerkabel, 20 m	84423 ⁻	1V2020	844231V2020	
Netzwerksteuerkabel zur Verbindung zwischen den Pumpen				
CRYOVISION / Netzwerk Steuerkabel, 5 m		_	844231	V2005
oder CRYOVISION / Netzwerk Steuerkabel, 10 m		_	844231V2010	
oder CRYOVISION / Netzwerk Steuerkabel, 20 m		_	844231V2020	
Optionales Interface-Modul				
COOLVAC ProfiBus-Modul ProfiBus-RS232-Konverter für COOL.DRIVE und CRYOVISION				
entweder COOLVAC ProfiBus-Module angeschlossen an COOL.DRIVE-Steuer- und Anzeige-Elektronik jeder Kryopumpe (In diesem Falle können CRYOVISION und Netzwerk-Steuerkabel entfallen.)	8440	00V1	844000	V1 (2x)
oder COOLVAC ProfiBus-Modul angeschlossen am CRYOVISION ²⁾	844000V1		84400	00V1

Die Anordnung der Komponenten ist im Abschnitt "Zubehör" unter Absatz "COOLVAC iClassicLine, System-Komponenten" dargestellt.

^{* 400} V, 50 Hz / 470 V, 60 Hz ** 200 V, 50 Hz / 200 V, 230 V, 60 Hz

¹⁾ Die Länge der Steuerkabel sollte zur Länge der flexiblen Druckleitungen passend gewählt werden.

²⁾ Mit reduzierter Kommunikationsgeschwindigkeit zur einzelnen Kryopumpe bei Mehrfachbetrieb.

COOLVAC 5000 ICL COOLVAC 10000 ICL

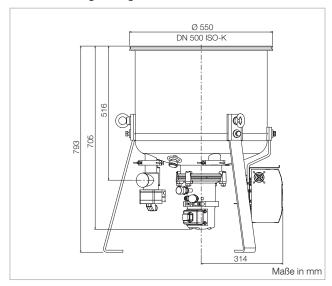
Vorteile für den Anwender

- Kohlenwasserstofffreies Hochvakuum
- Hohe Kapazität für Argon und Wasserstoff
- Hoher Crossover-Wert
- Einfache Bedienung
- Problemlose Integration in komplexe Hochvakuum-Systeme
- Vollautomatisches Regenerieren durch integrierte Steuerung COOL.DRIVE 1)
- Einfacher Service vor Ort ohne Demontage der Pumpe und Rekonditionierung der Vakuumanlage möglich

Vorteile für den Anwender

- Kohlenwasserstofffreies Hochvakuum
- Hohe Kapazität für Argon und Wasserstoff
- Hoher Crossover-Wert
- Einfache Bedienung
- Problemlose Integration in komplexe Hochvakuum-Systeme
- Vollautomatisches Regenerieren durch integrierte Steuerung COOL.DRIVE 1)
- Einfacher Service vor Ort ohne Demontage der Pumpe und Rekonditionierung der Vakuumanlage möglich

Typische Anwendungen


- Aufdampf-Anlagen
- Elektronenstrahl-Schweiß-Anlagen
- Ionen-Implantations-Anlagen
- Optische Beschichtungs-Anlagen
- Metallisierungs-Anlagen

DN 400 ISO-K 272 Maße in mm

Maßzeichnung der COOLVAC 5000 iCL

Typische Anwendungen

- Aufdampf-Anlagen
- Weltraum-Simulationskammern
- Elektronenstrahl-Schweiß-Anlagen
- Optische Beschichtungs-Anlagen
- Metallisierungs-Anlagen

Maßzeichnung der COOLVAC 10000 iCL

Technische Daten COOLVAC

	5000 iCL	10000 iCL
Hochvakuum (HV)-Flansch DN	400 ISO-K	500 ISO-K / 500 - 20" ANSI
Vorvakuum-Flansch 2) DN	40 ISO-KF	40 ISO-KF
Flansch zum Anschluss für Messröhre ³⁾ DN	16 ISO-KF	16 ISO-KF
Flansch für Elektroanschluss DN	40 ISO-KF	40 ISO-KF
Überdruckentlastungseinrichtung mit Flansch- anschluss für Gasabführungsleitung DN	40 ISO-KF	40 ISO-KF
4-polige Stromdurchführung für Si-Diode auf Flansch DN	16 ISO-KF	16 ISO-KF
Heizungen 1. Stufe W V AC	160 42	160 42
2. Stufe W V AC	90 42	90 42
Temperatur-Messfühler 1. Stufe 2. Stufe	Pt100 Si-Diode	Pt100 Si-Diode
Eingebauter Kaltkopf COOLPOWER	5/100	5/100
Gewicht kg	53	70
Abkühlzeit bis T ₂ = 20 K min	100	150
Crossover-Wert mbar · I	700	800
Saugvermögen H_2O I/s Ar / N_2 I/s H_2 I/s	18000 4000 / 5200 6200	30000 8400 / 10000 10000
Kapazität	3000 / 3000 32 ⁴⁾	5500 / 5500 45 ⁴⁾
Max. Saugleistung Ar / N ₂ mbar · I/s H ₂ mbar · I/s	10 / 10 7 ⁴⁾	10 / 10 7 ⁴⁾
Helium-Anschlüsse DN (Selbstdichtende Verschraubungen: Außengewinde Typ 5400-S2-8)	1/2"	1/2"

¹⁾ Für den automatischen Betrieb notwendiges Zubehör wie elektrische Regenerierheizungen, Vorvakuumventil DN 40 ISO-KF und Vakuummessröhre DN 16 ISO-KF sind bereits im Lieferumfang enthalten und mit der integrierten Steuerung COOL.DRIVE verbunden.

²⁾ Elektropneumatisches Eckventil im Lieferumfang enthalten.

³⁾ Vakuummessröhre im Lieferumfang enthalten.

⁴⁾ Die maximale Saugleistung für H₂ (Wasserstoff) gilt nur für eine regenerierte Kryopumpe unter kurzzeitiger Last. Im Dauerbetrieb ist mit einer Absenkung sowohl der Saugleistung als auch der Kapazität zu rechnen.

Bestelldaten COOLVAC 5000 iCL **COOLVAC 10000 iCL**

	Europa*	USA/Japan**	Europa*	USA/Japan**
	KatNr.		KatNr.	
COOLVAC 5000 iCL, DN 400 ISO-K	844411V0006 –		-	
COOLVAC 10000 iCL, DN 500 20" ANSI	-	-	844511	V0004
COOLVAC 10000 iCL, DN 500 ISO-K	-	-	844511	V0006
Kompressoren, Druckleitungen und Steue	rkabel			
Kompressor				
CP 6000 H	840000V6001	-	840000V6001	_
CP 6200 H	-	840000V6201	-	840000V6201
Stromversorgungskabel für Kompressor	Sieł	e Bestelldaten der	Kompressor-Einhe	iten
Satz flexible Druckleitungen				
FL 4.5 (1/2", 1/2")	892	87	892 87	
oder FL 9.0 (1/2", 1/2")	892	88	892 88	
oder FL 18.0 HP (1/2") + FL 18.0 LP (1/2")	840203 + 840204		840203 + 840204	
Steuerkabel zur Kompressoreinheit 1)				
COOLPAK Steuerkabel, 5 m	844231V4005 844231V4		V4005	
oder COOLPAK Steuerkabel, 10 m	844231V4010		844231V4010	
oder COOLPAK Steuerkabel, 20 m	844231V4020		844231V4020	
Optionale Elektroniken, Kabel und Geräte				
CRYOVISION Steuer- und Anzeigeeinheit	844231	V0002	844231	V0002
CRYOVISION Netzwerk / Steuerkabel				
CRYOVISION Netzwerk / Steuerkabel, 5 m	844231	V2005	844231	V2005
oder CRYOVISION Netzwerk / Steuerkabel, 10 m	844231V2010		844231V2010	
oder CRYOVISION Netzwerk / Steuerkabel, 20 m	844231V2020		844231V2020	
Optionales Interface-Modul				
COOLVAC ProfiBus-Modul ProfiBus-RS232-Konverter für COOL.DRIVE und CRYOVISION	8440	00V1	8440	00 V 1

 $\label{thm:continuity} \mbox{Die Anordnung der Komponenten ist im Abschnitt "Zubeh\"{o}r" unter Absatz "COOLVAC i Classic Line, System-Komponenten" dargestellt.}$

^{* 400} V, 50 Hz / 470 V, 60 Hz ** 200 V, 50 Hz / 200 V, 230 V, 60 Hz

¹⁾ Die Länge der Steuerkabel sollte zur Länge der flexiblen Druckleitungen passend gewählt werden.

Notizen	

COOLVAC 18000 iCL

COOLVAC 30000 iCL

COOLVAC 60000 iCL

COOLVAC 18000 iCL mit Flansch DN 630 ISO-F

COOLVAC 30000 iCL mit Sonderflansch

COOLVAC 60000 iCL mit Flansch DN 1250 ISO-F

Vorteile für den Anwender

- Kohlenwasserstofffreies Hochvakuum
- Hohes Saugvermögen für Wasserdampf und Stickstoff
- Schnelles, sicheres und effizientes Regenerieren mit dem elektrischen Regenerier-System ¹⁾
- Einfache Bedienung

Vorteile für den Anwender

- Kohlenwasserstofffreies Hochvakuum
- Hohes Saugvermögen für Wasserdampf und Stickstoff
- Schnelles, sicheres und effizientes Regenerieren mit dem elektrischen Regenerier-System ¹⁾
- Einfache Bedienung

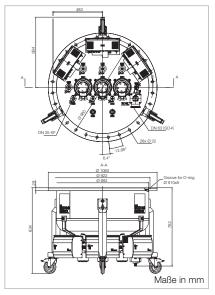
Vorteile für den Anwender

- Kohlenwasserstofffreies Hochvakuum
- Hohes Saugvermögen für Wasserdampf und Stickstoff
- Schnelles, sicheres und effizientes Regenerieren mit dem elektrischen Regenerier-System ¹⁾
- Einfache Bedienung

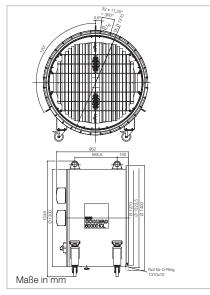
Typische Anwendungen


- Weltraum-Simulationskammern
- Aufdampf-Anlagen
- Elektronenstrahl-Schweiß-Anlagen
- Optische Beschichtungs-Anlagen
- Metallisierungs-Anlagen

Typische Anwendungen


- Weltraum-Simulationskammern
- Aufdampf-Anlagen
- Elektronenstrahl-Schweiß-Anlagen
- Optische Beschichtungs-Anlagen
- Metallisierungs-Anlagen

Typische Anwendungen


- Weltraum-Simulationskammern
- Aufdampf-Anlagen
- Elektronenstrahl-Schweiß-Anlagen
- Optische Beschichtungs-Anlagen
- Metallisierungs-Anlagen

Maßzeichnung der COOLVAC 18000 iCL

Maßzeichnung der COOLVAC 30000 iCL

Maßzeichnung der COOLVAC 60000 iCL

Technische Daten

COOLVAC 18000 iCL COOLVAC 30000 iCL COOLVAC 60000 iCL

Hochvakuum (HV)-Flansch	DN	630 ISO-F	35"ANSI	1250 ISO-F
Vorvakuum-Flansch 2)	DN	63 ISO-K	63 ISO-K	63 ISO-K
Flansch mit Stromdurchführung	9			
für Silizium-Diode	DN	16 ISO-KF (2x)	16 ISO-KF (2x)	16 ISO-KF (2x)
Flansch zur weiteren Verwendu	ing DN	40 ISO-KF	-	-
Flansch mit 11-poliger Stromdu	urchführung			
mit zusätzlichem Pt100 auf Fla	nsch DN	-	40 ISO-KF	40 ISO-KF
Überdruckentlastungseinrichtu	ng mit Flansch-			
anschluss für Gasabführungsle	itung DN	40 ISO-KF	40 ISO-KF	40 ISO-KF
Saugvermögen				
H_2O	l/s	46000	93000	180000
Ar / N ₂	l/s	13500 / 18000	25000 / 30000	47000 / 57000
H ₂	I/s	14000	30000	60000
Kapazität				
Ar / N ₂	bar∙I	6000	6500	9000
H ₂ bei 10 ⁻⁶ mbar	bar⋅l	65 ³⁾	100 ³⁾	150 ³⁾
Eingebauter Kaltkopf	COOLPOWER	5/100 (2x)	5/100 (2x) und 140T (1x)	5/100 (2x) und 140T (2x)
Max. Saugleistung				
Ar / N ₂	mbar · I/s	14	14	25
H_2	mbar · I/s	7 3)	7 3)	12 ³⁾
Crossover-Wert bei 20 K ca.	mbar · I	800	1200	1000
Abkühlzeit auf 20 K ca.	min	180	260	330
Gesamthöhe	mm	siehe Maßzeichnung	siehe Maßzeichnung	siehe Maßzeichnung
Gewicht ca.	kg	131	262	503
Silizium-Diode zur Temperatur-	Messung			
an der zweiten Stufe des Kaltko	opfes	eingebaut (2x)	eingebaut (2x)	eingebaut (2x)
Regenerier-Heizungen an der				
ersten Stufe des Kaltkopfes		eingebaut (2x)	eingebaut (3x)	eingebaut (4x)
zweiten Stufe des Kaltkopfe		eingebaut (2x)	eingebaut (2x)	eingebaut (2x)
zwonon otale des Nankopie		- J	3 - 3 - 3 - 3 - 3 - 3	3

Für den automatischen Betrieb notwendiges Zubehör wie elektrische Regenerierheizungen, Vorvakuumventil DN 63 ISO-KF und Vakuummessröhre DN 16 ISO-KF sind bereits im Lieferumfang enthalten und mit der integrierten Steuerung COOL.DRIVE verbunden.

²⁾ Elektropneumatisches Eckventil im Lieferumfang enthalten.

³⁾ Die maximale Saugleistung für H₂ (Wasserstoff) gilt nur für eine regenerierte Kryopumpe unter kurzzeitiger Last. Im Dauerbetrieb ist mit einer Absenkung sowohl der Saugleistung als auch der Kapazität zu rechnen.

Bestelldaten

COOLVAC 18000 iCL COOLVAC 30000 iCL COOLVAC 60000 iCL

USA/Japan**

Europa*

Europa*

	Kat	Nr.	Kat	Nr.	Kat	Nr.	
COOLVAC 18000 iCL, DN 630 ISO-F	84463	844631V0006		_		_	
COOLVAC 30000 iCL, 35" ANSI	-	_	844891V9005		_		
COOLVAC 60000 iCL, DN 1250 ISO-F	-	_		-	844896	6V9005	
Kompressoren, Druckleitungen und Ste	euerkabel						
Kompressor							
CP 6000 H	840000V6001 (2x)	_	840000V6001 (3x)	_	840000V6001 (4x)	_	
CP 6200 H	-	840000V6201 (2x)	_	840000V6201 (3x)	_	840000V6201 (4x)	
Stromversorgungskabel für Kompressor		Siehe Bestelldaten der Kompressor-Einheiten					
Satz flexible Druckleitungen							
FL 4.5 (1/2", 1/2")	892 8	892 87 (2x)		892 87 (3x)		892 87 (4x)	
oder FL 9.0 (1/2", 1/2")	892 8	8 (2x)	892 88 (3x)		892 88 (4x)		
oder FL 18.0 HP (1/2") + FL 18.0 LP (1/2")	840203 (2x)	+ 840204 (2x)	840203 (3x) + 840204 (3x)		840203 (4x) + 840204 (4x)		
Steuerkabel zur Kompressoreinheit 1)							
COOLPAK Steuerkabel, 5 m	844231V	4005 (2x)	844231V	4005 (3x)	844231V	4005 (4x)	
oder COOLPAK Steuerkabel, 10 m	844231V	4010 (2x)	844231V4010 (3x)		844231V4010 (4x)		
oder COOLPAK Steuerkabel, 20 m	844231V	844231V4020 (2x)		844231V4020 (3x)		844231V4020 (4x)	
Optionale Elektroniken, Kabel und Gera	äte						
CRYOVISION Steuer- und Anzeigeeinheit			84423	1V0002			
CRYOVISION Netzwerk / Steuerkabel							
CRYOVISION Netzwerk / Steuerkabel, 5 m		844231V2005					

USA/Japan**

Optionales Interface-Modul

COOLVAC ProfiBus-Modul	
ProfiBus-RS232-Konverter für COOL.DRIVE und	
CRYOVISION	

oder CRYOVISION Netzwerk / Steuerkabel, 10 m

oder CRYOVISION Netzwerk / Steuerkabel, 20 m

844231V2010

844231V2020

844000V1

Die Anordnung der Komponenten ist im Abschnitt "Zubehör" unter Absatz "COOLVAC iClassicLine, System-Komponenten" dargestellt.

Kryopumpen für manuellen Betrieb, BasicLine

Die COOLVAC-Kryopumpen der BasicLine-Ausführung sind in den technischen Daten bzgl. Saugvermögen, Kapazität, Einkühlzeit, eingebaute Kaltköpfe, maximale Saugleistung, eingebaute Temperatursensoren für die zweiten Kaltkopfstufen (Si-Dioden) und der zugehörigen Stromdurchführungen identisch zu den COOLVAC-Kryopumpen in iClassicLine-Ausführung.

Standardmäßig verfügen die BasicLine-Ausführungen der COOLVAC-Kryopumpen aber weder über elektrische

Regenerierheizungen noch über Temperatursensoren für die ersten Kaltkopfstufen, und auch weitere für den Betrieb der Kryopumpen an einer Vakuumanlage notwendige Komponenten wie z. B. Vakuummessröhre, Vorvakuumventil, Temperaturauslese-/ anzeigegerät für die Si-Diode(n) gehören nicht zum Lieferumfang.

Bei der Zusammenstellung des Zubehörs für die COOLVAC-BasicLine-Kryopumpen beraten wir Sie gern.

Alle bisher aufgeführten Kryopumpen der Serie iClassicLine (iCL) können nach Rücksprache mit unserem technischen Support auch als BasicLine-Version ausgeführt werden.

Als Beispiel seien hier die folgenden Katalog-Nummern genannt:

	KatNr.
COOLVAC 10000 BL-V, DN 500 20" ANSI	844511V1004
COOLVAC 10000 BL-V, DN 500 ISO-K	844511V1006

^{* 400} V, 50 Hz / 470 V, 60 Hz

^{** 200} V, 50 Hz / 200 V, 230 V, 60 Hz

¹⁾ Die Länge der Steuerkabel sollte zur Länge der flexiblen Druckleitungen passend gewählt werden.

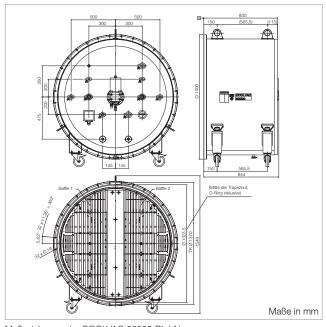
Kryopumpen mit Flüssig-Stickstoff-Kühlung des Strahlungsschildes und des Baffles der Kryopumpe

COOLVAC 30000 BL LN₂ und COOLVAC 60000 BL LN₂

COOLVAC 30000 BL LN.


COOLVAC 60000 BL LN, mit Flansch DN 1250 ISO-F

Vorteile für den Anwender


- Kohlenwasserstofffreies Hochvakuum
- Hohes Saugvermögen für Wasserdampf und Stickstoff
- Betrieb mit nur einer Kompressor-Einheit durch Flüssig-Stickstoff-(LN₂)-Kühlung von Strahlungsschild und Baffle
- Überwachung der Temperaturen von Strahlungsschild und Baffle durch zusätzliche Temperaturfühler

Typische Anwendungen

- Weltraum-Simulationskammern
- Vakuum-Öfen

Maßzeichnung der COOLVAC 30000 BL LN,

Maßzeichnung der COOLVAC 60000 BL LN,

Technische Daten

${\bf COOLVAC~30000~BL~LN}_2 \qquad \qquad {\bf COOLVAC~60000~BL~LN}_2$

Hochvakuum (HV)-Flansch DN	35"ANSI	1250 ISO-F
Vorvakuum-Flansch DN	63 ISO-K	63 ISO-K
Flansch mit 4-poliger		
Stromdurchführung für Silizium-Diode* DN	16 ISO-KF (2x)	16 ISO-KF (2x)
Flansch mit 6-poliger		
Stromdurchführung für 3 Pt 100		
(Strahlungsschild und Baffle-Hälften) DN	40 ISO-KF	40 ISO-KF
Überdruckentlastungseinrichtung mit Flansch	-	
anschluss für Gasabführungsleitung DN	40 ISO-KF	40 ISO-KF
Flansch mit Übertemperaturschutz für		
Regenerierheizungen des eingebauten		
Kaltkops DN	40 ISO-KF	40 ISO-KF
Saugvermögen		
H ₂ O I/s	93000	180000
Ar / N ₂ I/s	25000 / 30000	47000 / 57000
H ₂ I/s	30000	60000
Kapazität		
Ar/N_2 bar·I	6500	9000
H₂ bei 10 ⁻⁶ mbar bar · I	100 1)	150 1)
Eingebauter Kaltkopf COOLPOWER	10 MD	10 MD
Max. Saugleistung		
Ar/N_2 mbar · I/s	> 15 1)	> 30 1)
Crossover-Wert bei 20 K mbar · I	2000	3000
LN ₂ -Verbrauch, ca. I/h	7	10
LN ₂ -Anschlüsse SWAGELOK	SS-8-VCR (1/2")	SS-8-VCR (1/2")
Abkühlzeit auf 20 K, ca. h	5	6
Gesamthöhe mm	siehe Maßzeichnung	siehe Maßzeichnung
Gewicht ca. kg	300	400
Silizium-Diode zur Temperatur-Messung		
an der zweiten Stufe des Kaltkopfes	eingebaut	eingebaut
Regenerier-Heizungen an der		
ersten Stufe des Kaltkopfes	eingebaut	eingebaut
zweiten Stufe des Kaltkopfes	eingebaut	eingebaut

 $^{^{\}star}$ $\;$ Temperaturfühler an der 2. Stufe des eingebauten Kaltkopfes.

¹⁾ Die maximale Saugleistung für H₂ (Wasserstoff) gilt nur für eine regenerierte Kryopumpe unter kurzzeitiger Last. Im Dauerbetrieb ist mit einer Absenkung sowohl der Saugleistung als auch der Kapazität zu rechnen.

Bestelldaten

COC	N VAC	3000	BL LN
			J DL LIN.

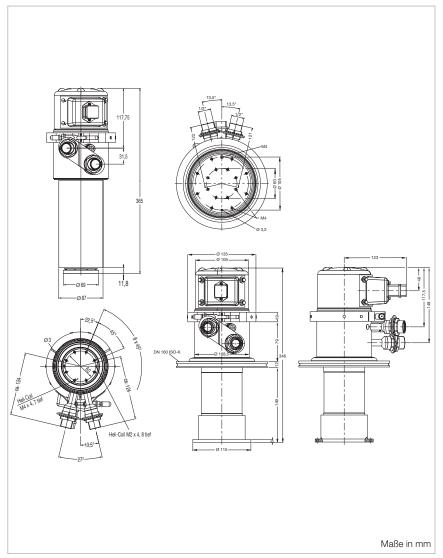
COOLVAC 60000 BL LN

	Europa*	USA/Japan**	Europa*	USA/Japan**
	Kat	Nr.	Kat	Nr.
COOLVAC 30000 BL LN ₂ , 35" ANSI	844890V9501		_	
COOLVAC 60000 BL LN ₂ , DN 1250 ISO-F		-	84489	5V9503
Kompressoren, Druckleitungen und Kaltkopfi	motor-Verbindເ	ıngskabel		
Kompressor				
CP 6000 HMD, 400 V / 50 Hz / 460 V / 60 Hz / 3-ph.	840000V6002	_	840000V6002	_
CP 6200 HMD, 200 V / 50 Hz / 200 – 230 V / 60 Hz / 3-ph.	-	840000V6202	_	840000V6202
Stromversorgungskabel für Kompressor	Si	ehe Bestelldaten der	Kompressor-Einheit	en
Flexible Druckleitungen (zum Betrieb mechanisch angetriebener Kaltköpfe)				
9 m lang, FL9 HP – DN20 (8f/8f) + FL9 LP – DN32 (8f/8f) 20 m lang,		840217 + 84	40218V0032	
FL20 HP – DN20 (8f/8f) + FL20 LP – DN32 (8f/8f)		840230V2020	+ 840231V2032	
Kaltkopfmotor-Verbindungskabel zur Kompressoreinheit 1)				
9 m lang	842 110			
20 m lang	842 112			
Optionale Geräte und Kabel				
Tieftemperatur-Anzeigegerät MODEL 211S	844 110			
HV-Messleitungen, 4-polig, mit Stecker zum Tieftemperatur-Anzeigegerät MODEL 211S				
10 m lang	844 113			
20 m lang		8441	13 V 20	
Weiteres Zubehör (Auswahl)				
Vorvakuumventil ²⁾ Eckventil DN 63 ISO-K, elektropneumatischer Antrieb, Steuerventil 24 V DC, Aluminium-Gehäuse Eckventil DN 63 ISO-K, elektropneumatischer Antrieb, Steuerventil 24 V DC, Edelstahl-Gehäuse			00V01 0V01	
Drucksensor THERMOVAC-Transmitter TTR 91 N, DN 16 ISO-KF (ohne Schaltpunkt) THERMOVAC-Transmitter TTR 91 N, DN 16 ISO-KF, 2 Sp, (mit 2 Schaltpunkten)			35V02 40V02	
Anschlussleitung zu Drucksensoren TTR 91 N, beidseitig FCC 68, 8-polig mit Abschirmung 3)		Ту	р А	
10 m lang		230	012	
20 m lang	124 28			

124 29

30 m lang

 ⁴⁰⁰ V, 50 Hz / 460 V, 60 Hz
 200 V, 50 Hz / 200 - 230 V, 60 Hz


Die Länge der Verbindungskabel sollte zur Länge der flexiblen Druckleitungen passend gewählt werden.
 weitere Eckventile mit anderen Spannungen des Vorsteuerventile siehe Katalogteil zu Ventilen.
 Die Länge der Verbindungskabel sollte zur Länge der flexiblen Druckleitungen passend gewählt werden.

Produkte Kryotechnik

Kaltköpfe, pneumatischer Antrieb Einstufige Kaltköpfe COOLPOWER 50 und 140 T

Einstufige Kaltköpfe COOLPOWER 50 (links) und 140 T (rechts)

Maßzeichnung des COOLPOWER 50 (links) und des COOLPOWER 140 T (rechts)

Vorteile für den Anwender

- Weitgehend lageunabhängiger Einsatz
- Hohe Kälteleistung
- Keine flüssigen Kältemittel erforderlich
- Einfachste Bedienung
- Kurze Abkühlzeit

Typische Anwendungen

- Proben-, Sensoren- und Detektorkühlung
 - z. B. Detektorkühlung in der Astronomie
- Kühlung von Hochtemperatursupraleitern
- Kühlung in magnetischen Geräten
- Kühlung von Flächen zum Pumpen von Gasen
- Kryogene Prozessgasreinigung
- Kondensieren, Resublimieren und Gefrieren von Gasen

Technische Daten		COOLPOWER 50	COOLPOWER 140 T	
Kälteleistung bei 50/60 Hz 1)				
bei 80 K, ca.	W	50	140	
bei 20 K, ca.	W	-	20	
Tiefste erreichbare Temperatur 1)	K	≤ 26	≤ 15	
Abkühlzeit auf				
20 K, ca.	min	_	55	
80 K, ca.	min	20	_	
Zulässige Umgebungstemperatur	°C	+10 bis +40	+10 bis +40	
He-Fülldruck bei Raumtemperatur				
(Überdruck)	bar	16	16	
He-Anschlüsse				
selbstdichtende Verschraubungen				
Hochdruck-Anschluss		1/2" 2)	1/2" 2)	
Niederdruck-Anschluss		1/2" 2)	1/2" 2)	
Gewicht	kg	8	12	

Bestelldaten COOLPOWER 50 COOLPOWER 140 T

		KatNr. KatNr.				
Kaltkopf mit DN 100 CF-R (drehbar) mit DN 160 CF-R (drehbar) mit DN 160 ISO-K mit Anschweißrohr		842050V0001 - 842050V0002 -	- - - 842050V0000	- - 842 030 -	_ 842030 V 9004 _ _	- - - 842030V0001
Abstand Flansch - Kältestufe	mm	149,5	-	148,5	111,4	_

Zubehör

Vanagasaa Finkait		
Kompressor-Einheit (für den Betrieb eines Kaltkopfes)		
COOLPAK 2000, 230 V / 50 Hz	840000V2000	_
COOLPAK 2200, 208 V / 60 Hz	840000V2200	_
COOLPAK 6000 H,		
400 V/50 Hz; 470 V / 60 Hz	_	840000V6001
COOLPAK 6200 H,		
200 V/50 Hz; 200 V, 230 V / 60 Hz	_	840000V6201
Stromversorgungs-Kabel		siehe Bestelldaten
	-	Kompressor-Einheiten COOLPAK
Flexible Druckleitungen		
FL 4.5 (1/2", 1/2") (= 1 Satz)	892 87	892 87
FL 9.0 (1/2", 1/2") (= 1 Satz)	892 88	892 88
FL 18.0 HP (1/2") (= Einzelleitung Hochdruck)	840 203	840 203
FL 18.0 LP (1/2") (= Einzelleitung Niederdruck)	840 204	840 204
Verbindungsleitung Kompressor – Kaltkopf		
Spannungsversorgungsleitung 4,5 m	E 400000323	E 40000323
Spannungsversorgungsleitung 18 m	840002964V0018	840002964V0018
Verlängerungsleitung 4,5 m	893 74	893 74

Option

Temperatur-Messung		
Silizium-Diode	844000V5	844000V5
Tieftemperatur-Anzeigegerät	844 110	844 110
Mess-Leitung	siehe Bestelldaten Tieftemperatur-	siehe Bestelldaten Tieftemperatur-
	Anzeigegerät	Anzeigegerät

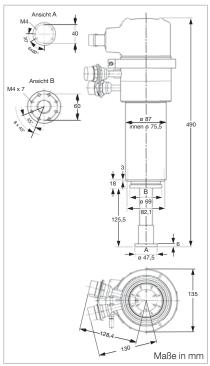
¹⁾ Die angegebenen Kälteleistungen und Temperaturen gelten nur für vertikalen Betrieb mit kaltem Ende nach unten.

 $^{^{2)}\,\,}$ Serie 5400 von Aeroquip, Kupplungsgröße "-8" (#8), oder kompatible Typen.

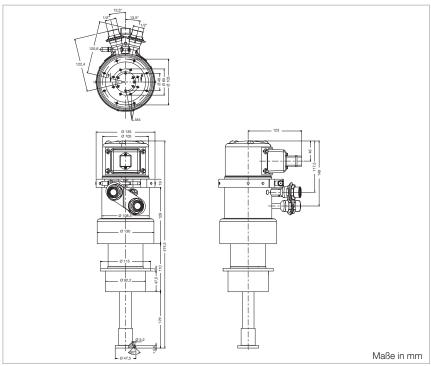
Zweistufige Kaltköpfe COOLPOWER 7/25 und 5/100

Zweistufiger Kaltkopf COOLPOWER 7/25

Zweistufiger Kaltkopf COOLPOWER 5/100


Vorteile für den Anwender

- Beliebige Einbaulage
- Hohe Kälteleistung
- Keine flüssigen Kältemittel erforderlich
- Einfachste Bedienung
- Kurze Abkühlzeit


Typische Anwendungen

- Proben-, Sensoren- und Detektorkühlung
 - Detektorkühlung in der Astronomie
 - Probenkühlung zur Spektroskopie
 - Probenkühlung für Anwendungen in Medizintechnik und F & E
- Kühlung von Hochtemperatursupraleitern
- Kühlung in magnetischen Geräten

- Kühlung von Flächen zum Pumpen von Gasen
- Kryogene Prozessgasreinigung
- Kondensieren, Resublimieren und Gefrieren von Gasen

Maßzeichnung des COOLPOWER 7/25

Maßzeichnung des COOLPOWER 5/100

Kat.-Nr.

COOLPOWER 7/25 Technische Daten COOLPOWER 5/100 Kälteleistung bei 50/60 Hz 1) 1. Stufe bei 80 K, ca. W 25 100 2. Stufe bei 20 K, ca. W 7 6 Tiefste erreichbare Temperatur 1) Κ ≤ 35 ≤ 35 1. Stufe, ca. 2. Stufe, ca. Κ ≤ 10 ≤ 10 Abkühlzeit der 2. Stufe auf 20 K, ca. 35 25 min Zulässige Umgebungstemperatur °С +5 bis +40 +5 bis +40 He-Fülldruck bei Raumtemperatur (Überdruck) bar 16 16 He-Anschlüsse selbstdichtende Verschraubungen Hochdruck-Anschluss 1/2" (#8 2) 1/2" (#8 2) 1/2" (#8) 1/2" (#8) Niederdruck-Anschluss Gewicht, ca. kg 10 10,5

Bestelldaten COOLPOWER 7/25 COOLPOWER 5/100

Kat.-Nr.

Kaltkopf COOLPOWER 7/25 - mit Anschweißrohr - mit Flansch DN 160 ISO-K (Abstand Flansch – 2. Stufe = 250 mm) - mit Flansch DN 100 CF-R (drehbar) (Abstand Flansch – 2. Stufe = 275 mm)	842 040 842 040V0002 842 040V0005	- - -
COOLPOWER 5/100 - mit Anschweißrohr - mit Flansch DN 160 ISO-K (Abstand Flansch – 2. Stufe = 277,5 mm) - mit Flansch DN 100 CF-R (drehbar)	<u>-</u> -	893 05 893 04 842021V0001
(Abstand Flansch – 2. Stufe = 265,5 mm)	_	04202140001
Zubehör		
Kompressor-Einheit (für den Betrieb eines Kaltkopfes) COOLPAK 2000, 230 V / 50 Hz COOLPAK 2200, 208 V / 60 Hz COOLPAK 6000 H 400 V/50 Hz; 470 V / 60 Hz COOLPAK 6200 H	840000V2000 840000V2200 -	- - 840000V6001
200 V/50 Hz; 200 V, 230 V / 60 Hz	_	840000V6201
Stromversorgungs-Kabel	-	siehe Bestelldaten Kompressor-Einheiten COOLPAK
Flexible Druckleitungen FL 4.5 (1/2", 1/2") (= 1 Satz) FL 9.0 (1/2", 1/2") (= 1 Satz) FL 18.0 HP (1/2") (= Einzelleitung Hochdruck) FL 18.0 LP (1/2") (= Einzelleitung Niederdruck)	892 87 892 88 840 203 840 204	892 87 892 88 840 203 840 204
Verbindungsleitung Kompressor – Kaltkopf Spannungsversorgungsleitung 4,5 m Spannungsversorgungsleitung 18 m Verlängerungsleitung 4,5 m	E 400000323 840002964V0018 893 74	E 40000323 840002964V0018 893 74

Option

Temperatur-Messung Silizium-Diode	844000V5	844000 V 5
Tieftemperatur-Anzeigegerät	844 110	844 110
Mess-Leitung	siehe Bestelldaten Tieftemperatur-	siehe Bestelldaten Tieftemperatur-
	Anzeigegerät	Anzeigegerät

¹⁾ Die angegebenen Kälteleistungen und Temperaturen gelten nur für vertikalen Betrieb mit kaltem Ende nach unten.

 $^{^{\}mbox{\tiny 2)}}$ Serie 5400 von Aeroquip, Kupplungsgröße "-8" (#8), oder kompatible Typen.

Kaltköpfe, mechanischer Antrieb Einstufiger Kaltkopf COOLPOWER 250 MD Zweistufiger Kaltkopf COOLPOWER 10 MD

Einstufiger Kaltkopf COOLPOWER 250 MD

Zweistufiger Kaltkopf COOLPOWER 10 MD

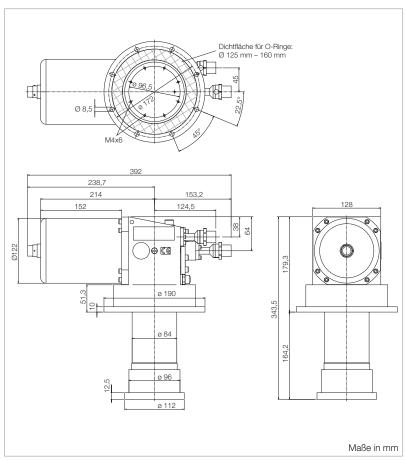
Vorteile für den Anwender

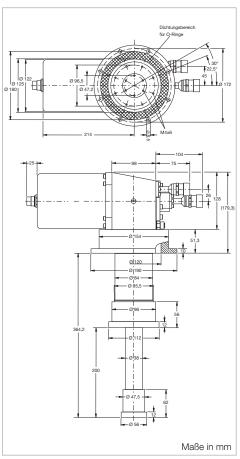
- Ausgezeichnete Kühl-Leistung
- bis zu 250 Watt bei 80 K auf Knopfdruck ^{1) 2)} (COOLPOWER 250 MD)
- 18 Watt bei 20 K auf Knopfdruck (COOLPOWER 10 MD)
- Höchst zuverlässig
- Konstruktion optimiert für eine mittlere Zeit zwischen zwei Ausfällen (MTFB) von > 100.000 Stunden
- Langer und wartungsfreier Betrieb
- Geringe Vibrationen durch den direkt angetriebenen Verdränger
- Keine flüssigen Kältemittel erforderlich
- Sehr einfache Bedienung
- Kurze Abkühlzeit
- Einfache Bedienung
- Einstecken und kühlen wie üblich für alle GM Kaltköpfe von Leybold
- Einfache Veränderung der Motordrehzahl durch die COOLPAK HMD-Kompressoreinheit
- COOLPOWER 250 MD einer der stärksten einstufigen GM-Kaltköpfe auf dem Markt:
- Hohe Kühlleistung von > 175 W bei
- Kühlleistung bis zu 250 W bei 80 K möglich ^{1) 2)}

COOLPOWER 10 MD – der stärkste 10 K GM-Kaltkopf auf dem Markt:

- Hohe Kühlleistung der zweiten Stufe von > 18 W bei 20 K
- Hohe Kühlleistung der ersten Stufe von > 25 W bei 40 K und ca.
 110 W bei 80 K

Typische Anwendungen


Der COOLPOWER 250 MD ist ein mechanisch angetriebener, einstufiger Gifford McMahon (GM) Kaltkopf ideal


geeignet zur

- Kühlung der Abschirmung in supraleitenden Magneten in Kernspintomographen (MRI)
- Kühlung von Kaltflächen in Spezial-Kryopumpen
- Kühlung von größeren Proben und Bauteilen; insbesondere
- Hochtemperatursupraleitende Spulen, Geräte und Massengüter
- Rekondensation von flüssigen Kältemitteln wie Stickstoff und Argon
- Reinigung von Gasen
- Proben für die spektrometrische Analyse in der Festkörper- und Oberflächenphysik
- Infrarot und Gammadetektoren
- Kalibrierung von Sensoren

Der COOLPOWER 10 MD ist ein mechanisch angetriebener zweistufiger Gifford McMahon (GM) Kaltkopf ideal geeignet zur

- Kühlung von Kryoproben in kernmagnetischen Resonanz-Spektrometern (NMR)
- Kühlung der Abschirmung in supraleitenden Magneten in Kernspintomographen (MRI)
- Kühlung von Kaltflächen in Spezial-Kryopumpen; dadurch wird die Erzeugung von Hochvakuum- und Ultra-Hochvakuum-Drücken ermöglicht
- Kühlung von größeren Proben und Bauteilen; insbesondere
 - Hochtemperatur supraleitende Spulen, Geräte und Massengut
 - Rekondensation von flüssigen Kältemitteln wie Wasserstoff oder Neon
 - Proben für die spektrometrische Analyse in der Festkörper- und Oberflächenphysik
 - Infrarot und Gammadetektoren
- Kalibrierung von Sensoren

Maßzeichnung des COOLPOWER 250 MD

Maßzeichnung des COOLPOWER 10 MD

COOLPOWER 10 MD

Tec	h i -		- D-	
iec	11111	SCI16	e Da	цеп

Kälteleistung bei 50/60 Hz 1)			
1. Stufe bei 80 K, ca.	w	175 ²⁾	110
2. Stufe bei 20 K, ca.	W	n/a	18
Tiefste erreichbare Temperatur 1)			
1. Stufe, ca.	K	≤ 25	≤ 28
2. Stufe, ca.	K	n/a	≤ 8
Abkühlzeit, unbelastet, der			
1. Stufe auf 80 K, ca.	min	35	n/a
2. Stufe auf 20 K, ca.	min	n/a	25
Zulässige Umgebungstemperatur	°C	+5 b	is +40
He-Fülldruck bei Raumtemperatur (Überdr	uck) bar	1	5
He-Anschlüsse			
selbstdichtende Verschraubungen			
Hochdruck-Anschluss		1/2" (#8 ³⁾)	1/2" (#8 ³⁾)
Niederdruck-Anschluss		1/2" (#8)	1/2" (#8)
Gewicht, ca.	kg	21	22

COOLPOWER 250 MD

¹⁾ Die angegebenen Kälteleistungen und Temperaturen gelten für vertikalen Betrieb mit kaltem Ende nach unten und mit Kaltkopfmotordrehzahl 120 RPM, He-System-Fülldruck 13 bar (Überdruck), Kompressoreinheiten COOLPAK 6000 HMD / 6200 HMD und mit flexiblen Druckleitungen FL 9.0 HP – DN20 (840217) und FL 9.0 LP – DN32 (840218V0032).

²⁾ Höhere Kälteleistungen bis max. 250 W bei 80 K (CP 250 MD) können mit speziellen Parametern und Zubehör nach Rücksprache mit dem technischen Support erreicht werden.

³⁾ Serie 5400 "– 8" von Aeroquip.

Bestelldaten

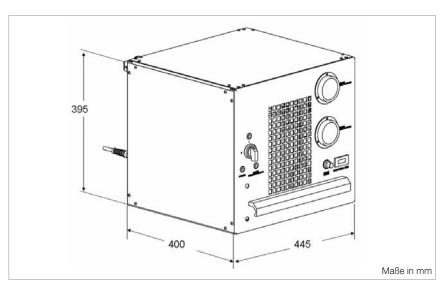
COOLPOWER 250 MD

COOLPOWER 10 MD

	KatNr.	KatNr.
Kaltkopf		
COOLPOWER 250 MD	842015V0001	_
COOLPOWER 250 MD; DN 160 CF-R (drehbar)	842015V0002	-
COOLPOWER 10 MD	_	842010
COOLPOWER 10 MD; DN 160 CF-R (drehbar)	-	842010V0002
Zubehör		
Kompressor-Einheit COOLPAK 6000 HMD, 400 V/3-ph. 50 Hz oder 460 V/3-ph. 60 Hz ± 10% COOLPAK 6200 HMD, 200 V/3-ph. 50 Hz oder	840000V6002	840000V6002
200-230 V/3-ph. 60 Hz ± 10%	84000V6202	840000V6202
Stromversorgungs-Kabel	siehe Bestelldaten	siehe Bestelldaten
Outomversorgungs-Naber	Kompressor-Einheiten COOLPAK	Kompressor-Einheiten COOLPAK
Flexible Druckleitung (zum Betrieb		
mechanisch angetriebener Kaltköpfe)		
9 m (Hochdruck)		
FL9 HP-DN 20 (8f/8f)	840	217
9 m (Niederdruck)		
FL9 LP-DN 32 (8f/8f)	840218	3V0032
20 m (Hochdruck)		
FL20 HP-DN 20 (8f/8f)	840230)V2020
20 m (Niederdruck)		
FL20 LP-DN 32 (8f/8f)	840231	IV2032
Verbindungskabel zu den Kaltköpfen		
COOLPOWER 250 MD, 10 MD		
9,0 m	842	110
20,0 m	842	112

Notizen Company of the Company of th	

Kompressor-Einheiten für Kaltköpfe pneumatischer Antrieb, Wasserkühlung COOLPAK 2000/2200


Kompressor-Einheit COOLPAK 2000 (2200 ähnlich)

Vorteile für den Anwender

- Hoher Wirkungsgrad und gesteigerte Leistungsfähigkeit für Kryopumpen und Refrigeratoren
- Sehr leiser und vibrationsarmer Lauf durch innovativen horizontal gelagerten Scroll-Verdichter
- Hohe Langzeit-Zuverlässigkeit durch langlebige, hocheffiziente Komponenten und verbessertes
 Ölmanagement im Vergleich zu

herkömmlichen Kompressoren mit Hubkolben- oder Rotationsverdichtern

- Einfache Installation und Bedienung
- Globale Spannungskompatibilität
- Problemlose Integration in komplexe
 Anlagen durch 24-V-DC-Interface
- Einfacher Adsorberwechsel
- Geringer Platzbedarf
- Niedrige Betriebskosten

Maßzeichnung des COOLPAK 2000/2200

Technische Daten		COOLPAK 2000 (50 Hz)	COOLPAK 2200 (60 Hz)	
Anzahl der elektrischen Anschlüsse				
für Kaltköpfe		1	1	
Helium-System-Fülldruck bei				
Raumtemperatur (Überdruck)	bar	15	14	
Umgebungstemperatur	°C	+5 bis +40	+5 bis +40	
Kühlwasser-Verbrauch	l/min	< 5	< 5	
Kühlwasser-Eintrittstemperatur	°C	+5 bis +25	+5 bis +25	
Netzspannung (1-Phase)	٧	230 ± 10%	208 ± 10%	
Betriebsstrom				
mit abgekühltem Kaltkopf	Α	9,5 bis 10,5	11,5 bis 12,5	
mit erwärmten Kaltkopf	Α	12,0	13,0	
Elektrische Leistungsaufnahme				
mit abgekühltem Kaltkopf	kW	2,2	2,3	
mit erwärmten Kaltkopf kW		2,4	2,5	
Fernbedienung über Interface	V DC	24	24	
Helium-Anschlüsse				
selbstdichtende Verschraubunge	en			
Hochdruck-Seite (Außengewi	nde)	1/2" 1)	1/2 ⁿ⁻¹⁾	
Niederdruck-Seite (Außengew	vinde)	1/2" 1)	1/2" 1)	
Wasseranschlüsse	DN	10	10	
Geräuschpegel (in 1 m Entfernung)	dB(A)	< 55	< 55	
Abmessungen (B x H x T)	mm	445 x 395 x 400	445 x 395 x 400	
Gewicht, ca.	kg	69	69	

Bestelldaten COOLPAK 2000 (50 Hz) COOLPAK 2200 (60 Hz)

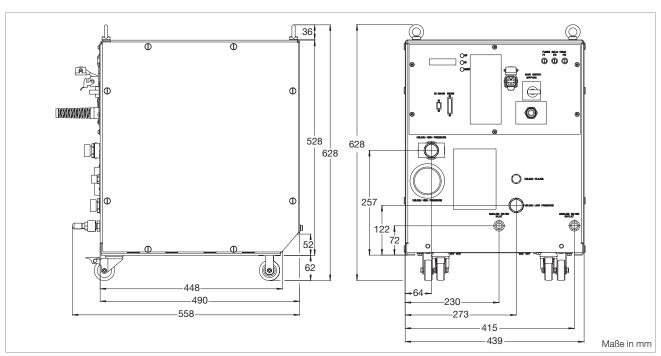
	KatNr.	KatNr.
Kompressor-Einheit	840000V2000	840000V2200
Zubehör optional		
Werkzeug-Kit	E20004779	E20004779
Ersatzteile		
Adsorber CPS-V8	E 840001973	E 840001973

 $^{^{\}mbox{\tiny 1)}}$ Serie 5400 von Aeroquip, Kupplungsgröße "-8", oder kompatible Typen.

Kompressor-Einheiten für Kaltköpfe pneumatischer Antrieb, Wasserkühlung COOLPAK 6000 H/6200 H/6000 HD

Kompressor-Einheit COOLPAK 6000 H/6200 H/6000 HD

pneumatisch angetriebenem Verdrängerkolben, d.h. zum Einzelbetrieb der Kaltköpfe COOLPOWER 140 T und 5/100, aber auch älterer Kaltköpfe wie RGS 120, RGD 580 und 1245, sowie zum Mehrfachbetrieb der Kaltköpfe COOLPOWER 50 und 7/25.


Dient zum Betrieb der Kaltköpfe mit

Daneben finden diese Kompressoren Verwendung zum Betrieb der Kryopumpen COOLVAC mit solchen eingebauten Kaltköpfen.

Vorteile für den Anwender

- Hoher Wirkungsgrad und gesteigerte Leistungsfähigkeit für Leybold-Kryopumpen und -Refrigeratoren
- Hohe Langzeit-Zuverlässigkeit durch modularen Aufbau und langlebige, hocheffiziente Komponenten
- Leiser und vibrationsarmer Lauf durch innovativen Scroll-Verdichter

- Einfache Installation und Bedienung
- Globale Spannungskompatibilität
- Problemlose Integration in komplexe
 Anlagen durch 24 V DC oder
 RS 232 C-Schnittstelle
- Nahezu wartungsfrei
- Geringer Platzbedarf
- Niedrige Betriebskosten

Maßzeichnung des COOLPAK 6000 H/6200 H/6000 HD

Technische Daten COOLPAK

		6000 H / 6000 HD		6200 H	
		50 Hz	60 Hz	50 Hz	60 Hz
Anzahl der elektrischen Anschlüsse					
für Kaltköpfe		1 /	2	1	
Helium-System-Fülldruck bei					
Raumtemperatur (Überdruck)	bar	17	16	15	14
Umgebungstemperatur	°C		+5	bis +40	
Kühlwasser-Verbrauch 1)	/min			5	
Kühlwasser-Eintrittstemperatur	°C		+5	bis +25	
Netzspannung (3-Phasen)					
bei Auslieferung	٧	400 ± 10%	_	230 2) + 1% / -10%	$230 \pm 10\%$
alternative Einstellung	V	-	470 ± 10%	200 ± 10%	$200 \pm 10\%$
Betriebsstrom					
mit abgekühltem Kaltkopf	Α	10 bis 12	_	20 bis 22	_
mit erwärmtem Kaltkopf	Α	11 bis 13	_	22 bis 25	-
Elektrische Leistungsaufnahme					
mit abgekühltem Kaltkopf	kW	6,5 bis 7,5	7,0 bis 8,0	6,5 bis 7,5	7,0 bis 8,0
mit erwärmtem Kaltkopf	kW	7,0 bis 8,0	7,5 bis 8,5	7,0 bis 8,0	7,5 bis 8,5
Fernbedienung über Interface		24 V DC oder RS 232 C			
Helium-Anschlüsse					
selbstdichtende Verschraubungen	1				
Hochdruck-Seite (Außengewind	de)		-	1/2" 4)	
Niederdruck-Seite (Außengewi	nde)	1/2" 4)			
Wasseranschlüsse			Schlauchtülle DN 10) / G 1/2" Außengewinde	
Geräuschpegel (in 1 m Entfernung) d	IB(A)			60	
Abmessungen (B x H x T)	mm		440 x	589 x 558	
Gewicht, ca.	kg			104	

Bestelldaten COOLPAK

6000 H / 6000 HD 6200 H 50 Hz 60 Hz 50 Hz 60 Hz

	50 HZ	60 HZ	50 HZ	60 HZ	
	KatNr.	KatNr.	KatNr.	KatNr.	
Kompressor-Einheit					
ohne Stromversorgungskabel					
Anschluss für 1 Kaltkopf (CP H)	840000	V6001	840000	V6201	
Anschluss für 2 Kaltköpfe (CP HD)	840000	V6004	-	-	
Stromversorgungs-Kabel					
CEE-Stecker, 32 A/6h, 3 Pol+N+PE, 3,5 m	893 95	-	-	-	
NEMA-Stecker, L 16-20 P, 20 A/480 V,					
3 Pol+PE (AWG 12), 3,5 m	-	893 96	_	-	
Aderendhülsen (AWG 10), 10 m	840 111		840 111		
Aderendhülsen (AWG 10), 20 m	840 112		840 112		
Zubehör					
Werkzeug-Satz	E 200	04779	E 200	04779	
Wasserkühlungs-Auslassdrossel	E 84000	00 133 ³⁾	-	-	
Ersatzteile					
Adsorber CP6000H	E 840002863				

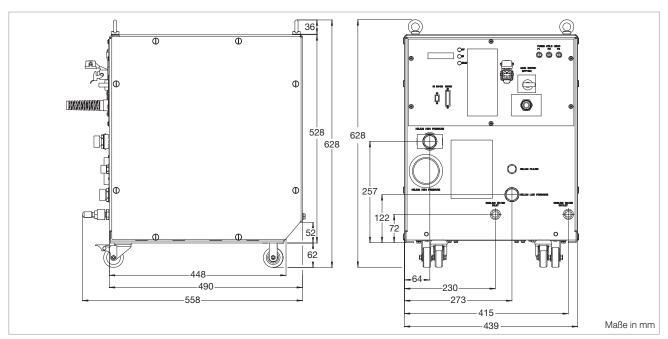
- $^{1)}~$ Bei Kühlwasser-Eintrittstemperatur von 25 $^{\circ}\text{C}.$
- ²⁾ Mit Fülldruck 14 bar (Überdruck).
- 3) Nur für COOLPAK 6000 HD.
- $^{\mbox{\tiny 4)}}$ Serie 5400 von Aeroquip, Kupplungsgröße "-8", oder kompatible Typen.

Kompressor-Einheiten für Kaltköpfe mechanischer Antrieb, Wasserkühlung COOLPAK 6000 HMD/6200 HMD

Kompressor-Einheit COOLPAK 6000 HMD/6200 HMD

Einfache Installation und Bedienung

- Globale Spannungskompatibilität


 Problemlose Integration in komplexe Anlagen durch 24 V DC oder RS 232 C-Schnittstelle

 Variable Kaltkopfmotordrehzahl einstellbar über Tasten des Powermoduls oder RS232C-Schnittstelle

- Lange, wartungsfreie Betriebsdauer

Vorteile für den Anwender

- Hoher Wirkungsgrad und gesteigerte Leistungsfähigkeit für Leybold-
 - Refrigeratoren und -Kryopumpen
- Hohe Langzeit-Zuverlässigkeit durch modularen Aufbau und langlebige und hocheffiziente Komponenten
- Leiser und vibrationsarmer Lauf durch innovativen Scroll-Verdichter
- Geringer Platzbedarf

Maßzeichnung des COOLPAK 6000 HMD/6200 HMD

Der COOLPAK 6000/6200 HMD findet Verwendung zum Einzel-Betrieb der Kaltköpfe mit mechanisch angetriebe-

nem Verdrängerkolben; d.h.
COOLPOWER 250 MD und 10 MD.
Daneben wird diese Kompressoreinheit für den Betrieb der Kryopumpen
COOLVAC 30000 BL LN₂ und
COOLVAC 60000 BL LN₂ eingesetzt.

Technische Daten COOLPAK

		6000 HMD		6200 HMD	
		50 Hz	60 Hz	50 Hz	60 Hz
Netzspannung (3-ph.)	V	400 ± 10%	460 ± 10%	200 ± 10%	200 - 230 ± 10%
Helium-System-Fülldruck bei					
Raumtemperatur (Überdruck)	bar	15	14	14	13
		Alle anderen technischen Daten siehe COOLPAK 6000 H und 6200 H			

Bestelldaten COOLPAK

	6000 HMD	6200 HMD
	KatNr.	KatNr.
Kompressor-Typ 400 V/3-ph. 50 Hz oder 460 V/3-ph. 60 Hz ± 10%	840000V6002	_
200 V/3-ph. 50 Hz oder 200-230 V/3-ph. 60 Hz ± 10%	-	840000V6202
Flexible Druckleitung (zum Betrieb mechanisch angetriebener Kaltköpfe) 9 m (Hochdruck) FL9 HP-DN 20 (8f/8f)	840	217
9 m (Niederdruck) FL9 LP-DN 32 (8f/8f) 20 m (Hochdruck) FL20 HP-DN 20 (8f/8f) 20 m (Niederdruck)		3V0032 0V2020
FL20 LP-DN 32 (8f/8f)	840231V2032	
Verbindungskabel zu den Kaltköpfen COOLPOWER 250 MD, 10 MD		
9,0 m 20,0 m		110 112
Stromversorgungs-Kabel CEE-Stecker, 32 A/6h, 3 Pol+N+PE, 3,5 m NEMA-Stecker, L 16-20 P, 20 A/480 V, 3 Pol+PE (AWG 12), 3,5 m	893 95 893 96	-
Aderendhülsen (AWG 10), 10 m Aderendhülsen (AWG 10), 20 m	840 840	111 112
Zubehör Werkzeug-Satz Wasserkühlungs-Auslassdrossel		04779 000133
Ersatzteile Adsorber CP6000H	E 8400	002863

Allgemeines Zubehör für Kompressor-Einheiten COOLPAK 2000, 6000 H

Technische Daten	Länge	beidseitige Anschlü	Anschlüsse (Innengewinde)	
		Hochdruck-Leitung (HD)	Niederdruck-Leitung (ND)	
Flexible Druckleitungen 1), 2)				
FL 4.5 (1/2", 1/2") (= 1 Satz)	4,5 m	1/2"	1/2"	
FL 9.0 (1/2", 1/2") (= 1 Satz)	9,0 m	1/2"	1/2"	
FL 18.0 HP (1/2") (= Einzelleitung Hochdruck)	18 m	1/2"	-	
FL 18.0 LP (1/2") (= Einzelleitung Niederdruck)	18 m	-	1/2"	

Anschlüsse

Zubehör zu flexiblen Druckleitungen	(m = Außengewinde	, f = Innengewinde)
Übergangsstück für flexible Druckleitungen		
AD (1/2" m, 3/4" f)	1/2" m	3/4" f
AD (1/2" f, 3/4" m)	3/4" m	1/2" f
90°-Rohrbogen 1/2" für flexible Druckleitungen	1/2" m	1/2" f
Leitungs-Kupplung 1/2" (zum Verbinden von zwei 1/2" flexiblen Druckleitungen untereinander)	1/2" m	1/2" m
Leitungs-Kupplung 3/4"	3/4" m	3/4" m

	Gas-Verteiler	Gas-Verteiler-Anschlüsse	
	(benötigte Menge)	Kompressor-seitig (Innengewinde)	Kaltkopf-seitig (Außengewinde)
Gas-Verteiler (1 Stück)			
GD 2 (für 2-fach-Betrieb) 2)	2	1/2"	2 x 1/2"
GD 4 (für bis zu 4-fach-Betrieb) 2)	2	1/2"	4 x 1/2"

Bestelldaten Allgemeines Zubehör

	<u> </u>
	KatNr.
Flexible Druckleitungen 1), 2)	
FL 4.5 (1/2", 1/2") (= 1 Satz)	892 87
FL 9.0 (1/2", 1/2") (= 1 Satz)	892 88
FL 18.0 HP (1/2") (= Einzelleitung Hochdruck)	840 203
FL 18.0 LP (1/2") (= Einzelleitung Niederdruck)	840 204
Übergangsstück für flexible Druckleitungen	
AD (1/2" m, 3/4" f)	892 89
AD (1/2" f, 3/4" m)	892 90
90°-Rohrbogen 1/2" für flexible Druckleitungen	891 73
Leitungs-Kupplung 1/2" (zum Verbinden von zwei 1/2" flexiblen Druckleitungen untereinander)	891 71
Gas-Verteiler (1 Stück)	
GD 2 (für 2-fach-Betrieb) 2)	840 253 (2x)
GD 4 (für bis zu 4-fach-Betrieb) 2)	840 254 (2x)
Verbindungskabel zur Verbindung von	
Kaltkopf und Kompressor-Einheit 2)	
Spannungsversorgungsleitung 4,5 m	E400 000 323
Spannungsversorgungsleitung 18 m	840 002 964V0018
Verlängerungskabel zur Verbindung von	
Kaltkopf und Kompressor-Einheit 2)	
EL 4,5 (4,5 m lang)	893 74

Alle flexiblen Druck-Leitungen, Übergangs-Stücke, Rohrbögen, Isolier-Zwischenstücke, Leitungs-Kupplungen und Gas-Verteiler-Systeme sind mit selbstdichtenden Aeroquip-Verbindern ausgestattet und ab Werk mit hochreinem Helium-Gas (Reinheit: 99,999%) gefüllt. Der Fülldruck beträgt 16 bar (Überdruck).

¹⁾ Minimaler Biegeradius: 30 cm.

 $^{^{\}rm 2)}$ Nur geeignet für pneumatisch angetriebene Kaltköpfe und Kryopumpen.

Notizen Communication of the C	

Zubehör zu Kryopumpen / Kryotechnik

Steuerungs- und Überwachungs-Geräte für Kryopumpen CRYOVISION

Optionale Display-Einheit für COOLVAC iCL Kryopumpen mit Steuereinheit COOL.DRIVE

Vorteile für den Anwender

- Visualisierung sämtlicher Steuerungsvorgänge von Kryopumpen iClassicLine mit integrierter Steuereinheit COOL.DRIVE über den integrierten 7"-(177.8 mm) Tastbildschirm
- Schnittstelle zur kundenseitigen
 System-Steuerung für Einfach- oder
 Mehrfachbetrieb für Kryopumpen
 der iClassicLine Serie
- Ausgabe der Messsignale aller angeschlossenen Druck- und Temperatursensoren sowie Anzeige von Statusmeldungen der angeschlossenen Pumpen im Netzwerk
- Leicht in die kundenseitige System-Steuerung integrierbar

Typische Anwendungen

 Für den automatischen Betrieb der COOLVAC Kryopumpen der Reihe iClassicLine

Steuer- und Anzeige-Gerät CRYOVISION

Die intelligente Displayeinheit CRYOVISION steuert und überwacht automatisch bis zu 10 COOLVACiClassicLine-Kryopumpen.

Online Überwachung, Hilfefunktionen und eine Wartungs-Schnittstelle zur einfachen Diagnose sowie einfacher Software-Update über die eingebaute USB-Schnittstelle sind nur einige der bedienerfreundlichen Merkmale.

Das CRYOVISION kann alleine oder ferngesteuert über eine Schnittstelle betrieben werden.

Weiterhin steht ein optionales ProfiBus-Modul zur Kommunikation mit den einzelnen Kryopumpen bei Einzel- und Mehrfachbetrieb über den ProfiBus zur Verfügung.

Technische Merkmale

- Als Tischgerät oder als Einbaugerät im 19"-Rack einsetzbar
- Bedienung über 7"-(177.8-mm)-Tastbildschirm oder rückseitige Schnittstellen

Lieferumfang

- Stylus-Bedienstift
- Anschlussstecker für das Netzteil
- Klebegummifüße zur Verwendung als Tischversion
- Montagesatz für 19"-Rackeinbau
- Einbau- und Gebrauchsanleitung

Technische Daten

CRYOVISION

Betriebsspannung, ±10 %	V DC	24 1)	
Leistungsaufnahme	W	11	
Umgebungstemperatur im Betrieb	°C	+5 bis +40	
Abmessungen (B x H x T)	mm	213 x 128.5 x 160 (1/2 19" 3 HE)	
Gewicht	kg	1,9	

¹⁾ bereitgestellt über Steuerleitung CRYOVISION – COOL.DRIVE oder optional über externe, separate Spannungsversorgung.

Bestelldaten

CRYOVISION

	KatNr.
Steuer- und Anzeige-Gerät CRYOVISION	844231V0002
Zubehör	
Verbindungsleitung	
CRYOVISION - COOL.DRIVE /	
COOL.DRIVE - COOL.DRIVE	
Länge 5 r	n 844231V2005
10 r	n 844231V2010
20 r	n 844231V2020
Optionales Interface-Modul	

COOLVAC ProfiBus-Modul	
ProfiBus-RS232-Konverter für	
COOL.DRIVE und CRYOVISION	844000V1

COOLVAC ProfiBus-Modul

Optionaler ProfiBus-RS232-Konverter für COOLVAC iClassicLine Kryopumpen mit Steuereinheit COOL.DRIVE und für Display-Einheit CRYOVISION

Vorteile für den Anwender

- Direkte Steuerung und Überwachung der aktuellen iClassicLine-Kryopumpen-Reihe mit COOL.DRIVE-Controller über ProfiBus-DP-Protokoll
- Steuerung und Überwachung aller an die Display-Einheit CRYOVISION im Netzwerk angeschlossenen iClassicLine-Kryopumpen über ProfiBus-DP-Protokoll
- Steuerung und Überwachung älterer Kryopumpen der ClassicLine-Serie über den zugehörigen COOLVAC System Controller
- Ausführung als Modul für Hutschienenmontage für leichten Rack-Einbau

Typische Anwendungen

Umwandlung von Profibus-DP-Kommandos in RS232-Kommandos und von RS232-Rückmeldungen in Profibus-DP-Rückmeldungen für die RS232-Schnittstellen der COOL.DRIVE-Controller an den iClassicLine-Kryopumpen bzw. für die RS232-Schnittstelle der optionalen Display-Einheit CRYOVISION sowie für die RS232-Schnittstelle des COOLVAC System Controller der früheren COOLVAC-ClassicLine-Kryopumpen-Reihe

COOLVAC ProfiBus-Modul

Das COOLVAC ProfiBus-Modul ermöglicht die einfache Steuerung und Überwachung von Kryopumpen der aktuellen iClassicLine-Reihe bzw. der früheren ClassicLine-Reihe über die RS232-Schnittstelle der zugehörigen Steuer- und Anzeigegeräte COOL.DRIVE und CRYOVISION bzw. COOLVAC SC über den Profibus-DP-Standard.

Die zugehörige GSD-Datei steht Ihnen auf unserer Homepage zur Verfügung.

Technische Merkmale

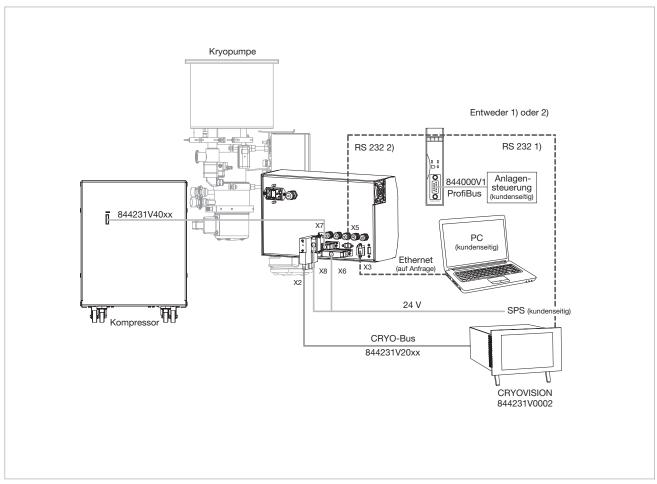
- Kunststoffgehäuse, belüftet
- Montage Kombifuß für Hut- und C-Schiene
- Interfacemodul ProfiBus-DP Slave
- ProfiBus-DP V0 entsprechend IEC 61158-2 und IEC 61784 Type 3
- ProfiBus-DP-Adressbereich Hex \$01 ... \$7D über Schalter und \$7E über Software anwählbar; entsprechend dezimal 1 ... 126
- ProfiBus-Abschlusswiderstand über Schalter im Modul einschaltbar
- Anschluss ProfiBus über 9-polige Sub-D-Buchse
- Anschluss RS232-Schnittstellenleitung über Schraubsteckklemmen

Lieferumfang

- ProfiBus-Modul für Hutschienenmontage
- RS232-Anschlussleitung 3 m
- Einbau- und Gebrauchsanleitung

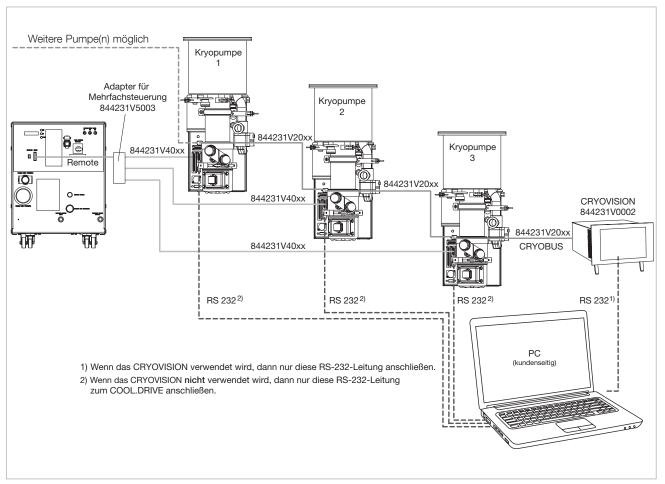
Technische Daten

COOLVAC ProfiBus-Modul

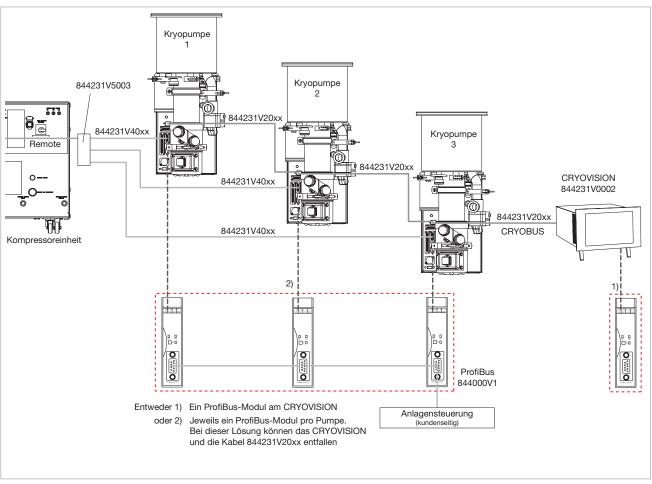

Betriebsspannung, ±10 %	V DC	24	
Stromaufnahme, ca.	mA	90	
Umgebungstemperatur im Betrieb	°C	+5 bis +40	
Abmessungen (B x H x T)	mm	22,5 x 100 x 115	
Gewicht	kg	0,13	

Bestelldaten

COOLVAC ProfiBus-Modul


	KatNr.
COOLVAC ProfiBus-Modul	844000V1

COOLVAC iClassicLine, System-Konfiguration Einfach-Betrieb


Steuerungsoption für eine Pumpe und eine Kompressoreinheit

COOLVAC iClassicLine, System-Konfiguration Zweifach- und Mehrfach-Betrieb

Steuerungsoption für drei Pumpen

COOLVAC iClassicLine, System-Konfiguration Zweifach- und Mehrfach-Betrieb

Steuerungsoptionen für mehrere Pumpen mit jeweils einem eingebauten COOL.DRIVE

Tieftemperatur-Anzeigegerät MODEL 211S

Vorteile für den Anwender

- Versorgung einer Silizium-Diode
- Dreistelliges LED-Display
- Temperaturanzeige zwischen
 1 und 450 Kelvin
- Zwei Schaltpunkte
- RS 232 C-Schnittstelle

Typische Anwendungen

- Temperatur-Messung bei Kryostaten
- Temperatur-Messung bei Kryopumpen zur Betriebsüberwachung und zur Steuerung von Pumpständen

Technische Daten

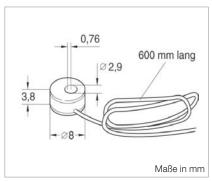
MODEL 211S

Messstrom	μΑ	10
Anzeige		5-stellige LED
Temperatur-Bereich	K	1,4 bis 475
Auflösung		0,001 K von 1,4 bis 99,9 K 0,01 K von 100 bis 475 K
Genauigkeit		\pm 0,05 K von 1,5 bis 99,9 K \pm 0,05 K von 100 bis 475 K
Anschluss-Spannung		5 V DC bei 1 A über mitgeliefertes 100-240 V AC DC-Netzteil
Schaltpunkte		2
Schaltausgänge		2 Relais (Öffner und Schließer) 30 V DC bei 1 A
Analogausgang Spannung Strom	V mA	0 bis 10 4 bis 20
RS 232 C-Schnittstelle		a) Temperatur-Ausgabe b) Externes Ändern der Schaltpunkte
Zulässige Umgebungs-Temperaturen	°C	+15 bis +35
Mechanischer Aufbau/Gehäuse		Tischgerät
Abmessungen (B x H x T)	mm	96 x 48 x 166
Gewicht (inklusive Verpackung), ca.	kg	0,45

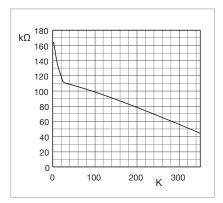
Bestelldaten

MODEL 211S

	KatNr.
Tieftemperatur-Anzeigegerät MODEL 211S	844 110
HV-Mess-Leitung, 2-polig	044 440
mit Stecker, 10 m lang 1) HV-Mess-Leitung, 4-polig	844 112
mit Stecker, 10 m lang ²⁾ UHV-Mess-Leitung 4-polig	844 113
mit Stecker, 10 m lang ³⁾	844 114
Silizium-Diode, Typ E, mit Anschluss-Leitung und	
Kleinsteckern ⁴⁾ – ohne Stromdurchführung	844000V5
HV-Stromdurchführung auf Flansch	
DN 25 ISO-KF, 2-polig ⁵⁾ UHV-Stromdurchführung auf Flansch	E20019256
DN 16 CF, 4-polig ⁶⁾	500 217


passend zu HV-Stromdurchführung auf Flansch DN 25 ISO-KF (E20019256) und für ältere Kryopumpen vom Typ RPK.

- passend für HV-Stromdurchführung (E20019256).
- passend zu 844000V5 und Messleitung 844112.
- 6) passend zu Messleitung 844114.


passend für aktuelle Baureihen BasicLine (BL) und BL LN_o.

passend für UHV-Stromdurchführung auf Flansch DN16CF (500217) und Kryopumpen der Raureihe RI - I IHV

Temperatur-Messfühler

Maßzeichnung der Silizium-Diode, Typ E

Standard-Kennlinie Silizium-Diode

Elektrische Temperatur-Messfühler sind – im Gegensatz zu Dampfdruck-Thermometern – für kontinuierliche Messungen in weiten Temperatur-Bereichen geeignet.

Silizium-Dioden zeichnen sich durch einenn egativen Temperatur-Koeffizienten des Widerstandes aus, d.h. mit wachsender Temperatur nimmt der Widerstand ab. Entscheidend für die Eignung dieser Dioden als Temperatur-Messfühler sind die Steilheit der Temperatur-Widerstands-Charakteristik und die absolute Größe des elektrischen

Widerstandes. Die Steilheit bestimmt die Empfindlichkeit des Messfühlers, und ein hoher elektrischer Widerstand ermöglicht es, auch bei geringer Belastung (Mikrowatt) hinreichend genau zu messen.

In hoch ausheizbaren Apparaturen können Silizium-Dioden erst nach dem Ausheizen eingebracht werden.

Die Silizium-Diode Typ E ist passend zum Tieftemperatur-Anzeigegerät.

Technische Daten

Silizium-Diode Typ E

Temperatur-Bereich	K	1,4 bis 325
Temperatur-Koeffiziert (dR/dT)		
qualitativ		negativ im gesamten Temperatur-Bereich
quantitativ	Ω/Κ	Kennlinie nicht linear
Messstrom	μΑ	10
Ausheizbar bis	°C	+60

Bestelldaten

Silizium-Diode Typ E

	KatNr.
Temperatur-Messfühler	844000V5
Silizium-Diode mit 4-poliger Stromdurchführung	E6512948

Notizen Carlo Carl	

Notizen	

lotizen er en	

Vertriebs- und Servicenetz

Deutschland

Levbold GmbH

Bonner Straße 498 D-50968 Köln T: +49-(0)221-347 1234 F: +49-(0)221-347 31234 sales@leybold.com www.leybold.com

eybold GmbH VB Nord

Niederlassung Berlin Industriestraße 10b D-12099 Berlin T:

+49-(0)30-435 609 0 +49-(0)30-435 609 10 sales.bn@leybold.com

Leybold GmbH VB Süd

Niederlassung München Karl-Hammerschmidt-Straße 34 D-85609 Aschheim-Dornach T: +49-(0)89-357 33 9-10 F: +49-(0)89-357 33 9-33 sales.mn@leybold.com service.mn@leybold.com

Leybold Dresden GmbH Service Competence Center Zur Wetterwarte 50, Haus 304 D-01109 Dresden

Service: +49-(0)351-88 55 00 +49-(0)351-88 55 041

info.dr@leybold.com Europa

Belgien

Leybold Nederland B.V. Belgisch bijkantoor

Leuvensesteenweg 542-9A B-1930 Zaventem Sales:

+32-2-711 00 83 +32-2-720 83 38 sales.zv@leybold.com Service:

T: +32-2-711 00 82 F: +32-2-720 83 38 service.zv@leybold.com

Frankreich

Leybold France S.A.S.

Parc du Technopolis, Bâtiment Beta 3, Avenue du Canaca. F-91940 Les Ulis cedex Sales und Service: T: +33-1-69 82 48 00 F: +33-1-69 07 57 38 info.ctb@leybold.com sales.ctb@leybold.com

Leybold France S.A.S.

Valence Factory 640, Rue A. Bergès B.P. 107 F-26501 Bourg-lès-Valence Cedex T: +33-4-75 82 33 00 F: +33-4-75 82 92 69 marketing.vc@leybold.com

Großbritannien

Leybold UK LTD.

Unit 9 Silverglade Business Park Leatherhead Road Chessington Surrey (London) KT9 2QL Sales: +44-13-7273 7300 +44-13-7273 7301 sales.ln@leybold.com +44-13-7273 7320 +44-13-7273 7303 service.ln@leybold.com

Leybold Italia S.r.I. Via Filippo Brunelleschi 2 I-20093 Cologno Monzese Sales: +39-02-27 22 31 +39-02-27 20 96 41 sales.mi@leybold.com Service: T: +39-02-27 22 31 F: +39-02-27 22 32 17 service.mi@leybold.com

Niederlande

Levbold Nederland B.V.

Floridadreef 102 NL-3565 AM Utrecht Sales und Service: T: +31-(30) 242 63 30 F: +31-(30) 242 63 31 sales.ut@leybold.com service.ut@leybold.com

Schweiz

Levbold Schweiz AG

Hinterbergstrasse 56 CH-6312 Steinhausen Lager- und Lieferanschrift: Riedthofstrasse 214 CH-8105 Regensdorf Sales:

+41-44-308 40 50 +41-44-302 43 73 sales.zh@leybold.com Service:

+41-44-308 40 62 +41-44-308 40 60 service.zh@leybold.com

Spanien

Leybold Hispánica, S.A.

C/. Huelva, 7 E-08940 Cornellá de Llobregat (Barcelona) .. +34-93-666 43 11

+34-93-666 43 70 sales.ba@leybold.com Service:

+34-93-666 46 13 +34-93-685 43 70 service.ba@leybold.com

Amerika

USA

Leybold USA Inc.

5700 Mellon Road USA-Export, PA 15632 T: +1-724-327-5700 F: +1-724-325-3577 info.ex@leybold.com Sales: +1-724-327-5700 +1-724-333-1217 Service: +1-724-327-5700 +1-724-325-3577

Brasilien

Leybold do Brasil Ltda.Rod. Vice-Prefeito Hermenegildo Tonolli, nº. 4413 - 6B Distrito Industrial CEP 13.213-086 Jundiaí - SP Sales und Service: +55 11 3395 3180 +55 11 99467 5934 sales.ju@leybold.com service.ju@leybold.com

Asien

Volksrepublik China

Leybold (Tianjin) International Trade Co. Ltd.

Beichen Economic Development Area (BEDA), No. 8 Western Shuangchen Road Tianjin 300400 China Sales und Service: T: +86-400 038 8989

+86-800 818 0033 +86-22-2697 4061 +86-22-2697 2017 sales.ti@levbold.com service.tj@leybold.com

Leybold India Pvt Ltd.

T-97/2, MIDC Bhosari Pune-411 026 Indien Sales und Service: T: +91-80-2783 9925 F: +91-80-2783 9926 sales.bgl@leybold.com service.bgl@leybold.com

Leybold Japan Co., Ltd.

Headquarters Shin-Yokohama A.K.Bldg., 4th floor 3-23-3, Shin-Yokohama Kohoku-ku, Yokohama-shi Kanagawa-ken 222-0033 Japan Sales: T: +81-45-471-3330 F: +81-45-471-3323 sales.yh@leybold.com

Leybold Japan Co., Ltd.Tsukuba Technical Service Center 1959, Kami-yokoba Tsukuba-shi, Ibaraki-shi 305-0854 Japan Service +81-29 839 5480 +81-29 839 5485 Ť: F:

Malavsia

Leybold Malaysia Leybold Singapore Pte Ltd. No. 1 Jalan Hi-Tech 2/6

service.iik@leybold.com

Kulim Hi-Tech Park Kulim, Kedah Darul Aman 09000 Malavsia Sales and Service: +604 4020 222 +604 4020 221 sales.ku@leybold.com service.ku@leybold.com

Süd Korea

Leybold Korea Ltd.

3F. Jellzone 2 Tower Jeongja-dong 159-4 Bundang-gu Sungnam-si Gyeonggi-do Bundang 463-384, Korea Sales: T: + +82-31 785 1367 F: +82-31 785 1359 sales.bd@leybold.com Service: 623-7, Upsung-Dong Cheonan-Si Chungcheongnam-Do Korea 330-290 +82-41 589 3035 +82-41 588 0166 service.cn@leybold.com

Singapur

Leybold Singapore Pte Ltd.

42 Loyang Drive Loyang Industrial Estate Singapore 508962 Singapore Sales und Service: T: +65-6303 7030 F: +65-6773 0039 sales.sg@leybold.com service.sg@leybold.com

Leybold Taiwan Ltd.
10F., No. 32, Chenggong 12th St.,
Zhubei City, Hsinchu County 302
Taiwan, R.O.C.
Sales und Service: +886-3-500 1688 +886-3-550 6523 sales.hc@leybold.com service.hc@leybold.com

Headquarter Leybold GmbH

Bonner Straße 498 D-50968 Köln T: +49-(0)221-347-0 F: +49-(0)221-347-1250 info@leybold.com

